Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Adv Exp Med Biol ; 1190: 33-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31760636

RESUMO

Myelination and remyelination in the central nervous system (CNS) are essential for rapid conduction of action potentials and for appropriate neuronal communications supporting higher brain functions. Myelination is dependent on developmental stage and is controlled by neuronal axons-oligodendrocyte (OL) signaling. Numerous studies of the initial myelination and remyelination stages in the CNS have demonstrated several key cytoskeletal signals in axons and OLs. In this review, we focus on cytoskeletal signal-regulated OL myelination and remyelination, with particular attention to neuronal Notch proteins, bidirectional Eph/ephrin signaling, OL integrin and cadherin superfamily proteins, OL actin rearrangement, and OL tyrosine kinase Fyn substrate proteins during the initial myelination and remyelination stages in the CNS.


Assuntos
Citoesqueleto/fisiologia , Oligodendroglia/fisiologia , Remielinização , Transdução de Sinais , Sistema Nervoso Central/fisiologia , Efrinas/fisiologia , Humanos , Bainha de Mielina/fisiologia , Receptores Notch/fisiologia
2.
Biosci Biotechnol Biochem ; 82(9): 1591-1598, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29804513

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate a wide variety of genes involved in fatty acid and cholesterol synthesis. In the present study, we identified that isoxanthohumol (IXN) suppressed SREBP activity. Low concentrations of IXN (10 and 30 µM) reduced the amount of mature forms of SREBPs, while high concentration of IXN (100 µM) reduced both precursor and mature forms of SREBPs in Huh-7 cells. The IXN-mediated decrease in the precursor forms of SREBPs in Huh-7 cells was completely abolished by culturing cells under sterol-supplemented conditions and was partly abolished by treatment with a proteasome inhibitor, MG132, but not a lysosome inhibitor, NH4Cl. Moreover, IXN accelerated the ubiquitination of the precursor forms of SREBP-1a. These results suggest that IXN suppresses SREBP activity, at least in part, via ubiquitin-proteasome-dependent degradation of the precursor forms of SREBPs. ABBREVIATIONS: ACC1: acetyl-CoA carboxylase 1; DMEM: Dulbecco's modified Eagle's medium; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; 25-HC: 25-hydroxycholesterol; HMGCR: HMG-CoA reductase; HMGCS: HMG-CoA synthase; Insig: insulin-induced gene; IXN: isoxanthohumol; LPDS: lipoprotein-deficient serum; SCAP: SREBP cleavage-activating protein; SCD1: stearoyl-CoA desaturase; SREBPs: sterol regulatory element-binding proteins; XN: xanthohumol.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Ubiquitina/metabolismo , Xantonas/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteólise , Reação em Cadeia da Polimerase em Tempo Real
3.
J Phys Ther Sci ; 30(3): 443-447, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29581668

RESUMO

[Purpose] The purpose of this study was to examine the effects of task-specific plantar flexor training on walking ability indices in a patient with a paretic ankle. [Subject and Methods] The subject was a 65-year-old male patient with right hemiplegia due to a left medullary ventral infarction. An ABA' single-subject design was adopted. The independent variable was a task-specific plantar flexor training exercise, similar to that during walking, targeting the paretic ankle. The dependent variables were the isometric ankle plantar flexor strength, maximum walking speed, step length, and trailing limb angle in the paretic terminal stance phase. The B study phase was divided into B1 and B2 phases. A two standard-deviation-band method was used to evaluate improvement. [Results] Improvements in the paretic plantar flexor strength, maximum walking speed, step length, and trailing limb angle in the B2 phase were observed. The improvements in the maximum walking speed, step length, and trailing limb angle were sustained in the A' study phase. [Conclusion] These results suggest that task-specific plantar flexor training exercise is efficacious in improving the walking ability index of a paretic ankle.

4.
J Biol Chem ; 290(33): 20565-79, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26140926

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that stimulate the expression of genes involved in fatty acid and cholesterol biosynthesis. Here, we demonstrate that a prenylated flavonoid in hops, xanthohumol (XN), is a novel SREBP inactivator that reduces the de novo synthesis of fatty acid and cholesterol. XN independently suppressed the maturation of SREBPs of insulin-induced genes in a manner different from sterols. Our results suggest that XN impairs the endoplasmic reticulum-to-Golgi translocation of the SREBP cleavage-activating protein (SCAP)-SREBP complex by binding to Sec23/24 and blocking SCAP/SREBP incorporation into common coated protein II vesicles. Furthermore, in diet-induced obese mice, dietary XN suppressed SREBP-1 target gene expression in the liver accompanied by a reduction of the mature form of hepatic SREBP-1, and it inhibited the development of obesity and hepatic steatosis. Altogether, our data suggest that XN attenuates the function of SREBP-1 by repressing its maturation and that it has the potential of becoming a nutraceutical food or pharmacological agent for improving metabolic syndrome.


Assuntos
Dieta , Fígado Gorduroso/prevenção & controle , Flavonoides/farmacologia , Obesidade/prevenção & controle , Propiofenonas/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
5.
Biosci Biotechnol Biochem ; 80(5): 1006-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26822063

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis by controlling the expression of genes involved in fatty acid and cholesterol synthesis. In this study, we used a stable cell line that expresses a luciferase reporter gene driven by an SRE-containing fatty acid synthase promoter to identify allyl isothiocyanate (AITC), one of the major isothiocyanates in cruciferous vegetables, as a novel SREBP inactivator. We found that AITC downregulated the proteolytic processing of SREBPs and the expression of their target genes in human hepatoma Huh-7 cells. Furthermore, AITC reduced the de novo synthesis of both fatty acids and cholesterol. Our results indicate a novel physiological function of AITC in lipid metabolism regulation.


Assuntos
Colesterol/metabolismo , Ácidos Graxos/antagonistas & inibidores , Isotiocianatos/farmacologia , Proteólise/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Linhagem Celular Tumoral , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica , Genes Reporter , Hepatócitos , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Luciferases/genética , Luciferases/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
6.
Biochem Biophys Res Commun ; 464(1): 76-82, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26043694

RESUMO

Major depression, one of the most prevalent mental illnesses, is thought to be a multifactorial disease related to both genetic and environmental factors. However, the genes responsible for and the pathogenesis of major depression at the molecular level remain unclear. Recently, we reported that stressed mice with elevated plasma corticosterone levels show upregulation and activation of serum glucocorticoid-regulated kinase (Sgk1) in oligodendrocytes. Active Sgk1 causes phosphorylation of N-myc downstream-regulated gene 1 (Ndrg1), and phospho-Ndrg1 increases the expression of N-cadherin, α-catenin, and ß-catenin in oligodendrocytes. This activation of the Sgk1 cascade results in morphological changes in the oligodendrocytes of nerve fiber bundles, such as those present in the corpus callosum. However, little is known about the molecular functions of the traditional and/or desmosomal cadherin superfamily in oligodendrocytes. Therefore, in this study, we aimed to elucidate the functions of the desmosomal cadherin superfamily in oligodendrocytes. Desmoglein (Dsg) 1, Dsg2, and desmocollin 1 (Dsc1) were found to be expressed in the corpus callosum of mouse brain, and the expression of a subtype of Dsg1, Dsg1c, was upregulated in oligodendrocytes after chronic stress exposure. Furthermore, Dsg1 proteins were localized around the plasma membrane regions of oligodendrocytes. A study in primary oligodendrocyte cultures also revealed that chronic upregulation of Sgk1 by dexamethasone administration is involved in upregulation of Dsg1c mRNA. These results may indicate that chronic stress induced Sgk1 activation in oligodendrocytes, which increases Dsg1 expression near the plasma membrane. Thus, Dsg1 upregulation may be implicated in the molecular mechanisms underlying the morphological changes in oligodendrocytes in response to chronic stress exposure.


Assuntos
Corpo Caloso/metabolismo , Desmogleína 1/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Oligodendroglia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Psicológico/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Corpo Caloso/patologia , Corticosterona/sangue , Desmogleína 1/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Fosforilação , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Estresse Psicológico/genética , Estresse Psicológico/patologia , alfa Catenina/genética , alfa Catenina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Glia ; 62(5): 709-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24481677

RESUMO

Recent studies have shown changes in myelin genes and alterations in white matter structure in a wide range of psychiatric disorders. Here we report that DBZ, a central nervous system (CNS)-specific member of the DISC1 interactome, positively regulates the oligodendrocyte (OL) differentiation in vivo and in vitro. In mouse corpus callosum (CC), DBZ mRNA is expressed in OL lineage cells and expression of DBZ protein peaked before MBP expression. In the CC of DBZ-KO mice, we observed delayed myelination during the early postnatal period. Although the myelination delay was mostly recovered by adulthood, OLs with immature structural features were more abundant in adult DBZ-KO mice than in control mice. DBZ was also transiently upregulated during rat OL differentiation in vitro before myelin marker expression. DBZ knockdown by RNA interference resulted in a decreased expression of myelin-related markers and a low number of cells with mature characteristics, but with no effect on the proliferation of oligodendrocyte precursor cells. We also show that the expression levels of transcription factors having a negative-regulatory role in OL differentiation were upregulated when endogenous DBZ was knocked down. These results strongly indicate that OL differentiation in rodents is regulated by DBZ.


Assuntos
Diferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/fisiologia , Oligodendroglia/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/fisiologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Endogâmicos WKY
8.
BMC Complement Altern Med ; 14: 133, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24712558

RESUMO

BACKGROUND: Oxidative stress has been suggested as a mechanism underlying skin aging, as it triggers apoptosis in various cell types, including fibroblasts, which play important roles in the preservation of healthy, youthful skin. Catechins, which are antioxidants contained in green tea, exert various actions such as anti-inflammatory, anti-bacterial, and anti-cancer actions. In this study, we investigated the effect of (+)-catechin on apoptosis induced by oxidative stress in fibroblasts. METHODS: Fibroblasts (NIH3T3) under oxidative stress induced by hydrogen peroxide (0.1 mM) were treated with either vehicle or (+)-catechin (0-100 µM). The effect of (+)-catechin on cell viability, apoptosis, phosphorylation of c-Jun terminal kinases (JNK) and p38, and activation of caspase-3 in fibroblasts under oxidative stress were evaluated. RESULTS: Hydrogen peroxide induced apoptotic cell death in fibroblasts, accompanied by induction of phosphorylation of JNK and p38 and activation of caspase-3. Pretreatment of the fibroblasts with (+)-catechin inhibited hydrogen peroxide-induced apoptosis and reduced phosphorylation of JNK and p38 and activation of caspase-3. CONCLUSION: (+)-Catechin protects against oxidative stress-induced cell death in fibroblasts, possibly by inhibiting phosphorylation of p38 and JNK. These results suggest that (+)-catechin has potential as a therapeutic agent for the prevention of skin aging.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/farmacologia , Fibroblastos/citologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/farmacologia , Caspase 3/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Phys Ther Res ; 27(1): 14-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690531

RESUMO

OBJECTIVES: Accurately predicting the likelihood of inpatients' home discharge in a convalescent ward is crucial for assisting patients and families in decision-making. While logistic regression analysis has been commonly used, its complexity limits practicality in clinical settings. We focused on decision tree analysis, which is visually straightforward. This study aimed to develop and validate the accuracy of a prediction model for home discharge for inpatients in a convalescent ward using a decision tree analysis. METHODS: The cohort consisted of 651 patients admitted to our convalescent ward from 2018 to 2020. We collected data from medical records, including disease classification, sex, age, duration of acute hospitalization, discharge destination (home or nonhome), and Functional Independence Measure (FIM) subitems at admission. We divided the cohort data into training and validation sets and developed a prediction model using decision tree analysis with discharge destination as the target and other variables as predictors. The model's accuracy was validated using the validation data set. RESULTS: The decision tree model identified FIM grooming as the first single discriminator of home discharge, diverging at four points and identifying subsequent branching for the duration of acute hospitalization. The model's accuracy was 86.7%, with a sensitivity of 0.96, specificity of 0.52, positive predictive accuracy of 0.88, and negative predictive accuracy of 0.80. The area under the receiver operating characteristic curve was 0.75. CONCLUSION: The predictive model demonstrated more than moderate predictive accuracy, suggesting its utility in clinical practice. Grooming emerged as a variable with the highest explanatory power for determining home discharge.

10.
Cureus ; 16(6): e63526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39081418

RESUMO

OBJECTIVE: Kamishoyosan (KSS), a traditional Japanese Kampo medicine, is widely used to treat neuropsychiatric symptoms in perimenopausal and postmenopausal women. We aimed to elucidate the functional mechanisms underlying KSS-mediated reduction of stress response behaviors and neuropsychological symptoms in perimenopausal and postmenopausal women. METHODS: Female mice were bilaterally ovariectomized (OVX) at the age of 12 weeks and exposed to chronic water immersion and restraint stress for three weeks. Among them, mice in the OVX+stress+KSS group were fed chow containing KSS from one week before exposure to chronic stress until the end of the experiment. Firstly, we performed a marble burying test and measured serum corticosterone levels to assess irritability and stress conditions. Next, we examined whether KSS affects microRNA-18 (miR-18) and glucocorticoid receptor (GR) protein expression, as well as the basal dendritic spine morphology of pyramidal neurons in the medial prefrontal cortex (mPFC) of postmenopausal chronic stress-exposed mice. Analyzed data were expressed as mean ± standard deviation. Tukey's post hoc test, followed by analysis of variance (ANOVA), was used for among-group comparisons. RESULTS: KSS administration normalized chronic stress-induced unstable emotion-like behavior and upregulated plasma corticosterone levels. Furthermore, KSS ameliorated GR protein expression by downregulating miR-18 expression in the mPFC and recovered the immature morphological changes in spine formation of pyramidal neurons in the mPFC of OVX mice following chronic stress exposure. CONCLUSIONS: KSS administration in postmenopausal chronic stress-exposed mice exerted anti-stress effects and improved the basal dendritic spine morphology of pyramidal neurons by regulating miR-18 and glucocorticoid receptor expression in the mPFC.

11.
Front Aging Neurosci ; 14: 934346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936767

RESUMO

Major depressive disorder (MDD) is a multifactorial disease affected by several environmental factors. Although several potential onset hypotheses have been identified, the molecular mechanisms underlying the pathogenesis of this disorder remain unclear. Several recent studies have suggested that among many environmental factors, inflammation and immune abnormalities in the brain or the peripheral tissues are associated with the onset of MDDs. Furthermore, several stress-related hypotheses have been proposed to explain the onset of MDDs. Thus, inflammation or immune abnormalities can be considered stress responses that occur within the brain or other tissues and are regarded as one of the mechanisms underlying the stress hypothesis of MDDs. Therefore, we introduce several current advances in inflammation studies in the brain that might be related to the pathophysiology of MDD due to stress exposure in this review.

12.
Dev Neurobiol ; 82(3): 245-260, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35220691

RESUMO

Protein arginine methylation has been recognized as one of key posttranslational modifications for refined protein functions, mediated by protein arginine methyltransferases (Prmts). Coactivator-associated arginine methyltransferase (Carm1, also known as Prmt4) participates in various cellular events, such as cell survival, proliferation, and differentiation through its protein arginine methylation activities. Carm1 regulates cell proliferation of a neuronal cell line and is reportedly expressed in the mammalian brain. However, its detailed function in the central nervous system, particularly in glial cells, remains largely unexplored. In this study, Carm1 exhibited relatively high expression in oligodendrocyte (OL) lineage cells present in the corpus callosum of the developing brain, followed by a remarkable downregulation after active myelination. The suppression of Carm1 activity by inhibitors in isolated oligodendrocyte precursor cells (OPCs) reduced the number of Ki67-expressing and BrdU-incorporated proliferating cells. Furthermore, Carm1 inactivation attenuated OL differentiation, as determined by the expression of Plp, a reliable myelin-related marker. It also impaired the extension of OL processes, accompanied by a significant reduction in gene expression related to OL differentiation and myelination, such as Sox10, Cnp, Myrf, and Mbp. In addition, OLs co-cultured with embryonic dorsal root ganglia neurons demonstrated that Carm1 activity is required for the appropriate formation of myelin processes and myelin sheaths around neuronal axons, and the induction of the clustering of Caspr, a node of Ranvier structural molecule. Thus, we propose that Carm1 is an essential molecule for the development of OPCs and OLs during brain development.


Assuntos
Corpo Caloso , Oligodendroglia , Animais , Arginina/metabolismo , Diferenciação Celular , Corpo Caloso/metabolismo , Mamíferos/metabolismo , Metilação , Oligodendroglia/metabolismo , Proteína-Arginina N-Metiltransferases
13.
Sci Rep ; 12(1): 8715, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610278

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate various genes involved in cholesterol and fatty acid synthesis. In this study, we describe that naturally occurring isothiocyanate sulforaphane (SFaN) impairs fatty acid synthase promoter activity and reduces SREBP target gene (e.g., fatty acid synthase and acetyl-CoA carboxylase 1) expression in human hepatoma Huh-7 cells. SFaN reduced SREBP proteins by promoting the degradation of the SREBP precursor. Amino acids 595-784 of SREBP-1a were essential for SFaN-mediated SREBP-1a degradation. We also found that such SREBP-1 degradation occurs independently of the SREBP cleavage-activating protein and the Keap1-Nrf2 pathway. This study identifies SFaN as an SREBP inhibitor and provides evidence that SFaN could have major potential as a pharmaceutical preparation against hepatic steatosis and obesity.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas de Ligação a Elemento Regulador de Esterol , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Colesterol/metabolismo , Ácido Graxo Sintases/metabolismo , Humanos , Isotiocianatos/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Sulfóxidos
14.
Am J Hum Genet ; 83(5): 572-81, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18976727

RESUMO

Progressive myoclonus epilepsy (PME) is a syndrome characterized by myoclonic seizures (lightning-like jerks), generalized convulsive seizures, and varying degrees of neurological decline, especially ataxia and dementia. Previously, we characterized three pedigrees of individuals with PME and ataxia, where either clinical features or linkage mapping excluded known PME loci. This report identifies a mutation in PRICKLE1 (also known as RILP for REST/NRSF interacting LIM domain protein) in all three of these pedigrees. The identified PRICKLE1 mutation blocks the PRICKLE1 and REST interaction in vitro and disrupts the normal function of PRICKLE1 in an in vivo zebrafish overexpression system. PRICKLE1 is expressed in brain regions implicated in epilepsy and ataxia in mice and humans, and, to our knowledge, is the first molecule in the noncanonical WNT signaling pathway to be directly implicated in human epilepsy.


Assuntos
Ataxia/genética , Homozigoto , Mutação , Epilepsias Mioclônicas Progressivas/genética , Proteínas Supressoras de Tumor/genética , Sequência de Aminoácidos , Cromossomos Humanos Par 12 , Consanguinidade , Genes Recessivos , Marcadores Genéticos , Haplótipos , Humanos , Proteínas com Domínio LIM , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Mapeamento Físico do Cromossomo , Síndrome
15.
Mol Cell Biol ; 26(6): 2273-85, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16508003

RESUMO

HuD is an RNA-binding protein that has been shown to induce neuronal differentiation by stabilizing labile mRNAs carrying AU-rich instability elements. Here, we show a novel mechanism of arginine methylation of HuD by coactivator-associated arginine methyltransferase 1 (CARM1) that affected mRNA turnover of p21cip1/waf1 mRNA in PC12 cells. CARM1 specifically methylated HuD in vitro and in vivo and colocalized with HuD in the cytoplasm. Inhibition of HuD methylation by CARM1 knockdown elongated the p21cip1/waf1 mRNA half-life and resulted in a slow growth rate and robust neuritogenesis in response to nerve growth factor (NGF). Methylation-resistant HuD bound more p21cip1/waf1 mRNA than did the wild type, and its overexpression upregulated p21cip1/waf1 protein expression. These results suggested that CARM1-methylated HuD maintains PC12 cells in the proliferative state by committing p21cip1/waf1 mRNA to its decay system. Since the methylated population of HuD was reduced in NGF-treated PC12 cells, downregulation of HuD methylation is a possible pathway through which NGF induces differentiation of PC12 cells.


Assuntos
Proteínas ELAV/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Arginina/metabolismo , Sequência de Bases , Encéfalo/citologia , Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citoplasma/metabolismo , Proteínas ELAV/genética , Regulação da Expressão Gênica , Meia-Vida , Células HeLa , Humanos , Metilação , Camundongos , Camundongos Endogâmicos ICR , Dados de Sequência Molecular , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Células PC12/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/genética , RNA Mensageiro/metabolismo , Ratos
17.
Artigo em Inglês | MEDLINE | ID: mdl-31781286

RESUMO

Females are well known to suffer disproportionately more than males from stress-related neuropsychiatric disorders, especially during perimenopausal and postmenopausal periods. In addition to a decline in serum estradiol levels, environmental stress and social stress likely contribute to the development of neuropsychiatric symptoms in perimenopausal and postmenopausal women. Kamishoyosan (KSS) is a traditional Japanese Kampo medicine, composed of a specified mixture of 10 crude compounds derived from plant sources, widely used for various neuropsychiatric symptoms in perimenopausal and postmenopausal women. However, the molecular mechanisms underlying KSS-mediated attenuation of neuropsychological symptoms and stress-response behaviors in perimenopausal and postmenopausal women remain unknown. In the present study, we first established a mouse model for postmenopausal depression-like signs using chronic water-immersion and restraint-stressed ovariectomized (OVX) mice to investigate the underlying molecular mechanism of KSS. We found that continuous administration of KSS to these mice normalized the activation of the hypothalamic-pituitary-adrenal (HPA) axis, ameliorated stress-induced depressive behavior, and prevented a decrease of neurogenesis in the hippocampus. As previous studies have implicated dysfunction of the hippocampal 5-HT1A receptor (5-HT1AR) in depressive disorders, we also evaluated the effect of KSS on 5-HT1AR expression and the protein kinase A- (PKA-) cAMP response element-binding- (CREB-) brain-derived neurotrophic factor (BDNF) signaling pathway in the hippocampus in this model. The level of 5-HT1AR in the hippocampus decreased in chronic stress-exposed OVX mice, while KSS treatment normalized the stress-induced decrease in 5-HT1AR expression in the hippocampus of chronic stress-exposed OVX mice. Furthermore, we found that KSS treatment upregulated the expression levels of phosphorylated PKA (p-PKA), phosphorylated CREB (p-CREB), and BDNF in the hippocampus in chronic stress-exposed OVX mice. These results suggest that KSS improves neuropsychiatric symptoms through 5-HT1AR and PKA-CREB-BDNF signaling in the hippocampus in postmenopausal women.

18.
Front Neurosci ; 13: 1072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680813

RESUMO

Repeated stress is a risk factor for mental disorders and can also lead to sleep disturbances. Although the effects of stress on sleep architecture have been investigated in rodents, the length of the stress exposure period in most studies has been limited to about 10 days, and few studies have analyzed the effects of chronic stress over a longer period. Here we investigated how sleep is affected in a mouse model of depression induced by 3 weeks of daily water immersion and restraint stress (WIRS). Sleep was recorded after 1, 2, and 3 weeks of stress exposure. Some stress-induced changes in several sleep measures were maintained across the 3 weeks, whereas other changes were most prominent during the 1st week. The total amount of non-rapid eye movement sleep (NREMS) was increased and the total amount of time spent awake was decreased across all 3 weeks. On the other hand, the amount of REMS during the dark phase was significantly increased in the 1st week compared with that at baseline or the 2nd and 3rd weeks. Electroencephalogram (EEG) power in the delta range was decreased during NREMS, although the total amount of NREMS was increased. These findings indicate that repeated WIRS, which eventually leads to a depression-like phenotype, differentially affects sleep between the early and subsequent periods. The increase in the amount of REMS during the dark phase in the 1st week significantly correlated with changes in body weight. Our results show how sleep changes throughout a long period of chronic stress in a mouse model of depression.

19.
Neurosci Lett ; 445(2): 162-5, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18773938

RESUMO

Neurite outgrowth is one of the crucial events in the formation of neural circuits. The majority of studies on neurite outgrowth have focused on signal transduction processes based on phosphorylation and acetylation; a few studies have suggested the involvement of other molecular mechanisms. Recent progress in understanding the nature of protein arginine N-methyltransferases (PRMTs) raises the possibility of the involvement of protein methylation accompanied by cell shape changes during neuronal differentiation. Here, we show that PRMT1 play a pivotal role in the neurite outgrowth of Neuro2a cells. Our results revealed that PRMT1 depletion specifically affected neurite outgrowth but not the physiological processes involved in cell growth and differentiation. Furthermore, we demonstrated that Btg2, one of the PRMT1 binding partner, depletion down-regulated arginine methylation in the nucleus and inhibited neurite outgrowth. These results indicate that protein arginine methylation by PRMT1 in the nucleus is an important step in neuritogenesis.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Neuritos/efeitos dos fármacos , Neurônios/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Linhagem Celular Transformada , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Genes Supressores de Tumor , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas Repressoras/genética , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor
20.
Sci Rep ; 8(1): 7644, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769557

RESUMO

Oligodendrocytes, the myelin-forming cells in the central nervous system (CNS), undergo morphological differentiation characterized by elaborated branched processes to enwrap neuronal axons. However, the basic molecular mechanisms underlying oligodendrocyte morphogenesis remain unknown. Herein, we describe the essential roles of Nuclear Distribution E Homolog 1 (NDE1), a dynein cofactor, in oligodendrocyte morphological differentiation. In the mouse corpus callosum, Nde1 mRNA expression was detected in oligodendrocyte lineage cells at the postnatal stage. In vitro analysis revealed that downregulation of NDE1 by siRNA impaired the outgrowth and extensive branching of oligodendrocyte processes and led to a decrease in the expression of myelin-related markers, namely, CNPase and MBP. In myelinating co-cultures with dorsal root ganglion (DRG) neurons, NDE1-knockdown oligodendrocyte precursor cells (OPCs) failed to develop into MBP-positive oligodendrocytes with multiple processes contacting DRG axons. Immunoprecipitation studies showed that NDE1 interacts with the dynein intermediate chain (DIC) in oligodendrocytes, and an overexpressed DIC-binding region of NDE1 exerted effects on oligodendrocyte morphogenesis that were similar to those following NDE1 knockdown. Furthermore, NDE1-knockdown-impaired oligodendrocyte process formation was rescued by siRNA-resistant wild-type NDE1 but not by DIC-binding region-deficient NDE1 overexpression. These results suggest that NDE1 plays a crucial role in oligodendrocyte morphological differentiation via interaction with dynein.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Gânglios Espinais/citologia , Neurogênese , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglia/citologia , Animais , Proteínas de Ciclo Celular/genética , Linhagem da Célula , Células Cultivadas , Técnicas de Cocultura , Gânglios Espinais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa