Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443865

RESUMO

Climate changes cause a dramatical increase in the ice-free season in the Arctic, forcing polar bears ashore, closer to human settlements associated with new and non-natural food objects. Such a diet may crucially transform the intestinal microbiome and metabolism of polar bears. The aim of this study was to characterize changes in the gut bacterial and fungal communities resulting from the transition to anthropogenic food objects by the means of 16S and ITS metabarcoding. Thus, rectal samples from 16 wild polar bears from the Kara-Barents subpopulation were studied. Human waste consuming resulted in a significant increase in the relative abundance of fermentative bacteria (Lactobacillaceae, Leuconostocaceae, and Streptococcaceae) and a decrease in proteolytic Enterobacteriaceae. However, the alpha-diversity parameters remained similar. Also, for the first time, the composition of the fungal community of the polar bear intestine was determined. Diet change is associated with the displacement of eurybiontic fungi (Thelebolus, Dipodascus, Candida (sake), and Geotrichum) by opportunistic Candida (tropicalis), Kazachstania, and Trichosporon. Feeding on human waste does not cause any signs of dysbiosis and probably leads to adaptive changes in the bacterial microbiome. However, the emergence of fungal facultative pathogens increases the risk of infections.

2.
PLoS One ; 11(11): e0165237, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27880778

RESUMO

In light of current debates on global climate change it has become important to know more on how large, roaming species have responded to environmental change in the past. Using the highly variable mitochondrial control region, we revisit theories of Rangifer colonization and propose that the High Arctic archipelagos of Svalbard, Franz Josef Land, and Novaia Zemlia were colonized by reindeer from the Eurasian mainland after the last glacial maximum. Comparing mtDNA control region sequences from the three Arctic archipelagos showed a strong genetic connection between the populations, supporting a common origin in the past. A genetic connection between the three archipelagos and two Russian mainland populations was also found, suggesting colonization of the Eurasian high Arctic archipelagos from the Eurasian mainland. The age of the Franz Josef Land material (>2000 years before present) implies that Arctic indigenous reindeer colonized the Eurasian Arctic archipelagos through natural dispersal, before humans approached this region.


Assuntos
DNA Mitocondrial/metabolismo , Rena/genética , Animais , Regiões Árticas , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/genética , Variação Genética , Haplótipos , Mitocôndrias/genética , Filogenia , Rena/classificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa