Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Infect Dis ; 228(5): 555-563, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37062677

RESUMO

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) possess mutations that prevent antibody therapeutics from maintaining antiviral binding and neutralizing efficacy. Monoclonal antibodies (mAbs) shown to neutralize Wuhan-Hu-1 SARS-CoV-2 (ancestral) strain have reduced potency against newer variants. Plasma-derived polyclonal hyperimmune drugs have improved neutralization breadth compared with mAbs, but lower titers against SARS-CoV-2 require higher dosages for treatment. We previously developed a highly diverse, recombinant polyclonal antibody therapeutic anti-SARS-CoV-2 immunoglobulin hyperimmune (rCIG). rCIG was compared with plasma-derived or mAb standards and showed improved neutralization of SARS-CoV-2 across World Health Organization variants; however, its potency was reduced against some variants relative to ancestral, particularly omicron. Omicron-specific antibody sequences were enriched from yeast expressing rCIG-scFv and exhibited increased binding and neutralization to omicron BA.2 while maintaining ancestral strain binding and neutralization. Polyclonal antibody libraries such as rCIG can be utilized to develop antibody therapeutics against present and future SARS-CoV-2 threats.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais/uso terapêutico , Antivirais , Saccharomyces cerevisiae , Anticorpos Neutralizantes/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais/uso terapêutico
2.
J Am Chem Soc ; 139(36): 12647-12654, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28806874

RESUMO

Achieving fast electron transfer between a material and protein is a long-standing challenge confronting applications in bioelectronics, bioelectrocatalysis, and optobioelectronics. Interestingly, naturally occurring extracellular electron transfer proteins bind to and reduce metal oxides fast enough to enable cell growth, and thus could offer insight into solving this coupling problem. While structures of several extracellular electron transfer proteins are known, an understanding of how these proteins bind to their metal oxide substrates has remained elusive because this abiotic-biotic interface is inaccessible to traditional structural methods. Here, we use advanced footprinting techniques to investigate binding between the Shewanella oneidensis MR-1 extracellular electron transfer protein MtrF and one of its substrates, α-Fe2O3 nanoparticles, at the molecular level. We find that MtrF binds α-Fe2O3 specifically, but not tightly. Nanoparticle binding does not induce significant conformational changes in MtrF, but instead protects specific residues on the face of MtrF likely to be involved in electron transfer. Surprisingly, these residues are separated in primary sequence, but cluster into a small 3D putative binding site. This binding site is located near a local pocket of positive charge that is complementary to the negatively charged α-Fe2O3 surface, and mutational analysis indicates that electrostatic interactions in this 3D pocket modulate MtrF-nanoparticle binding. Strikingly, these results show that binding of MtrF to α-Fe2O3 follows a strategy to connect proteins to materials that resembles the binding between donor-acceptor electron transfer proteins. Thus, by developing a new methodology to probe protein-nanoparticle binding at the molecular level, this work reveals one of nature's strategies for achieving fast, efficient electron transfer between proteins and materials.

3.
Angew Chem Int Ed Engl ; 54(30): 8713-6, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26095193

RESUMO

Adenosine to inosine RNA editing catalyzed by ADAR enzymes is common in humans, and altered editing is associated with disease. Experiments using substrate RNAs with adenosine analogues at editing sites are useful for defining features of the ADAR reaction mechanism. The reactivity of ADAR2 was evaluated with RNA containing the emissive adenosine analogue thieno[3,4-d]-6-aminopyrimidine ((th)A). This nucleoside was incorporated into a mimic of the glutamate receptor B (GluR B) mRNA R/G editing site. We found that (th)A is recognized by AMV reverse transcriptase as A, and is deaminated rapidly by human ADAR2 to give (th)I. Importantly, ADAR reaction progress can be monitored by following the deamination-induced change in fluorescence of the (th)A-modified RNA. The observed high (th)A reactivity adds to our understanding of the structural features that are necessary for an efficient hADAR2 reaction. Furthermore, the new fluorescent assay is expected to accelerate mechanistic studies of ADARs.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina/análogos & derivados , Corantes Fluorescentes/química , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/metabolismo , Humanos , Edição de RNA , Espectrometria de Fluorescência/métodos
4.
Nucleic Acids Res ; 40(19): 9825-35, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22885375

RESUMO

Adenosine deaminases acting on RNA (ADAR1 and ADAR2) are human RNA-editing adenosine deaminases responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. Since inosine is recognized during translation as guanosine, this often results in the expression of protein sequences different from those encoded in the genome. While our knowledge of the ADAR2 structure and catalytic mechanism has grown over the years, our knowledge of ADAR1 has lagged. This is due, at least in part, to the lack of well defined, small RNA substrates useful for mechanistic studies of ADAR1. Here, we describe an ADAR1 substrate RNA that can be prepared by a combination of chemical synthesis and enzymatic ligation. Incorporation of adenosine analogs into this RNA and analysis of the rate of ADAR1 catalyzed deamination revealed similarities and differences in the way the ADARs recognize the edited nucleotide. Importantly, ADAR1 is more dependent than ADAR2 on the presence of N7 in the edited base. This difference between ADAR1 and ADAR2 appears to be dependent on the identity of a single amino acid residue near the active site. Thus, this work provides an important starting point in defining mechanistic differences between two functionally distinct human RNA editing ADARs.


Assuntos
Adenosina Desaminase/metabolismo , Edição de RNA , Adenosina/análogos & derivados , Adenosina Desaminase/genética , Sequência de Aminoácidos , DNA Glicosilases/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Transcrição Gênica , Tubercidina/metabolismo
5.
Pathogens ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35890050

RESUMO

Conventionally, hyperimmune globulin drugs manufactured from pooled immunoglobulins from vaccinated or convalescent donors have been used in treating infections where no treatment is available. This is especially important where multi-epitope neutralization is required to prevent the development of immune-evading viral mutants that can emerge upon treatment with monoclonal antibodies. Using microfluidics, flow sorting, and a targeted integration cell line, a first-in-class recombinant hyperimmune globulin therapeutic against SARS-CoV-2 (GIGA-2050) was generated. Using processes similar to conventional monoclonal antibody manufacturing, GIGA-2050, comprising 12,500 antibodies, was scaled-up for clinical manufacturing and multiple development/tox lots were assessed for consistency. Antibody sequence diversity, cell growth, productivity, and product quality were assessed across different manufacturing sites and production scales. GIGA-2050 was purified and tested for good laboratory procedures (GLP) toxicology, pharmacokinetics, and in vivo efficacy against natural SARS-CoV-2 infection in mice. The GIGA-2050 master cell bank was highly stable, producing material at consistent yield and product quality up to >70 generations. Good manufacturing practices (GMP) and development batches of GIGA-2050 showed consistent product quality, impurity clearance, potency, and protection in an in vivo efficacy model. Nonhuman primate toxicology and pharmacokinetics studies suggest that GIGA-2050 is safe and has a half-life similar to other recombinant human IgG1 antibodies. These results supported a successful investigational new drug application for GIGA-2050. This study demonstrates that a new class of drugs, recombinant hyperimmune globulins, can be manufactured consistently at the clinical scale and presents a new approach to treating infectious diseases that targets multiple epitopes of a virus.

6.
Nat Biotechnol ; 39(8): 989-999, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33859400

RESUMO

Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease.


Assuntos
Linfócitos B/imunologia , COVID-19/terapia , Globulinas/biossíntese , SARS-CoV-2/imunologia , Animais , Anticorpos Antivirais/imunologia , Células CHO , Cricetulus , Ensaio de Imunoadsorção Enzimática , Globulinas/imunologia , Humanos , Imunização Passiva , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Zika virus/imunologia , Soroterapia para COVID-19
7.
MAbs ; 11(5): 870-883, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30898066

RESUMO

Immunization of mice followed by hybridoma or B-cell screening is one of the most common antibody discovery methods used to generate therapeutic monoclonal antibody (mAb) candidates. There are a multitude of different immunization protocols that can generate an immune response in animals. However, an extensive analysis of the antibody repertoires that these alternative immunization protocols can generate has not been performed. In this study, we immunized mice that transgenically express human antibodies with either programmed cell death 1 protein or cytotoxic T-lymphocyte associated protein 4 using four different immunization protocols, and then utilized a single cell microfluidic platform to generate tissue-specific, natively paired immunoglobulin (Ig) repertoires from each method and enriched for target-specific binders using yeast single-chain variable fragment (scFv) display. We deep sequenced the scFv repertoires from both the pre-sort and post-sort libraries. All methods and both targets yielded similar oligoclonality, variable (V) and joining (J) gene usage, and divergence from germline of enriched libraries. However, there were differences between targets and/or immunization protocols for overall clonal counts, complementarity-determining region 3 (CDR3) length, and antibody/CDR3 sequence diversity. Our data suggest that, although different immunization protocols may generate a response to an antigen, performing multiple immunization protocols in parallel can yield greater Ig diversity. We conclude that modern microfluidic methods, followed by an extensive molecular genomic analysis of antibody repertoires, can be used to quickly analyze new immunization protocols or mouse platforms.


Assuntos
Anticorpos Monoclonais Humanizados/genética , Diversidade de Anticorpos , Imunização/métodos , Microfluídica/métodos , Animais , Anticorpos Monoclonais Humanizados/imunologia , Linfócitos B/imunologia , Antígeno CTLA-4/imunologia , Regiões Determinantes de Complementaridade/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridomas , Camundongos , Camundongos Transgênicos , Biblioteca de Peptídeos , Receptor de Morte Celular Programada 1/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
8.
Antibodies (Basel) ; 8(1)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31544823

RESUMO

To discover therapeutically relevant antibody candidates, many groups use mouse immunization followed by hybridoma generation or B cell screening. One modern approach is to screen B cells by generating natively paired single chain variable fragment (scFv) display libraries in yeast. Such methods typically rely on soluble antigens for scFv library screening. However, many therapeutically relevant cell-surface targets are difficult to express in a soluble protein format, complicating discovery. In this study, we developed methods to screen humanized mouse-derived yeast scFv libraries using recombinant OX40 protein in cell lysate. We used deep sequencing to compare screening with cell lysate to screening with soluble OX40 protein, in the context of mouse immunizations using either soluble OX40 or OX40-expressing cells and OX40-encoding DNA vector. We found that all tested methods produce a unique diversity of scFv binders. However, when we reformatted forty-one of these scFv as full-length monoclonal antibodies (mAbs), we observed that mAbs identified using soluble antigen immunization with cell lysate sorting always bound cell surface OX40, whereas other methods had significant false positive rates. Antibodies identified using soluble antigen immunization and cell lysate sorting were also significantly more likely to activate OX40 in a cellular assay. Our data suggest that sorting with OX40 protein in cell lysate is more likely than other methods to retain the epitopes required for antibody-mediated OX40 agonism.

9.
MAbs ; 10(3): 431-443, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29376776

RESUMO

Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of "randomly paired" scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs.


Assuntos
Linfócitos B/imunologia , Biblioteca Gênica , Cadeias Leves de Imunoglobulina , Subunidade alfa de Receptor de Interleucina-21 , Anticorpos de Cadeia Única , Animais , Humanos , Cadeias Leves de Imunoglobulina/biossíntese , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Subunidade alfa de Receptor de Interleucina-21/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-21/imunologia , Camundongos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
10.
MAbs ; 9(8): 1270-1281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28846506

RESUMO

Conventionally, mouse hybridomas or well-plate screening are used to identify therapeutic monoclonal antibody candidates. In this study, we present an alternative to hybridoma-based discovery that combines microfluidics, yeast single-chain variable fragment (scFv) display, and deep sequencing to rapidly interrogate and screen mouse antibody repertoires. We used our approach on six wild-type mice to identify 269 molecules that bind to programmed cell death protein 1 (PD-1), which were present at an average of 1 in 2,000 in the pre-sort scFv libraries. Two rounds of fluorescence-activated cell sorting (FACS) produced populations of PD-1-binding scFv with a mean enrichment of 800-fold, whereas most scFv present in the pre-sort mouse repertoires were de-enriched. Therefore, our work suggests that most of the antibodies present in the repertoires of immunized mice are not strong binders to PD-1. We observed clusters of related antibody sequences in each mouse following FACS, suggesting evolution of clonal lineages. In the pre-sort repertoires, these putative clonal lineages varied in both the complementary-determining region (CDR)3K and CDR3H, while the FACS-selected PD-1-binding subsets varied primarily in the CDR3H. PD-1 binders were generally not highly diverged from germline, showing 98% identity on average with germline V-genes. Some CDR3 sequences were discovered in more than one animal, even across different mouse strains, suggesting convergent evolution. We synthesized 17 of the anti-PD-1 binders as full-length monoclonal antibodies. All 17 full-length antibodies bound recombinant PD-1 with KD < 500 nM (average = 62 nM). Fifteen of the 17 full-length antibodies specifically bound surface-expressed PD-1 in a FACS assay, and nine of the antibodies functioned as checkpoint inhibitors in a cellular assay. We conclude that our method is a viable alternative to hybridomas, with key advantages in comprehensiveness and turnaround time.


Assuntos
Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Genômica/métodos , Microfluídica/métodos , Receptor de Morte Celular Programada 1/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Regiões Determinantes de Complementaridade/metabolismo , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridomas , Camundongos , Biblioteca de Peptídeos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo
11.
MAbs ; 9(8): 1282-1296, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28846502

RESUMO

Affinity-matured, functional anti-pathogen antibodies are present at low frequencies in natural human repertoires. These antibodies are often excellent candidates for therapeutic monoclonal antibodies. However, mining natural human antibody repertoires is a challenge. In this study, we demonstrate a new method that uses microfluidics, yeast display, and deep sequencing to identify 247 natively paired anti-pathogen single-chain variable fragments (scFvs), which were initially as rare as 1 in 100,000 in the human repertoires. Influenza A vaccination increased the frequency of influenza A antigen-binding scFv within the peripheral B cell repertoire from <0.1% in non-vaccinated donors to 0.3-0.4% in vaccinated donors, whereas pneumococcus vaccination did not increase the frequency of antigen-binding scFv. However, the pneumococcus scFv binders from the vaccinated library had higher heavy and light chain Replacement/Silent mutation (R/S) ratios, a measure of affinity maturation, than the pneumococcus binders from the corresponding non-vaccinated library. Thus, pneumococcus vaccination may increase the frequency of affinity-matured antibodies in human repertoires. We synthesized 10 anti-influenza A and nine anti-pneumococcus full-length antibodies that were highly abundant among antigen-binding scFv. All 10 anti-influenza A antibodies bound the appropriate antigen at KD<10 nM and neutralized virus in cellular assays. All nine anti-pneumococcus full-length antibodies bound at least one polysaccharide serotype, and 71% of the anti-pneumococcus antibodies that we tested were functional in cell killing assays. Our approach has future application in a variety of fields, including the development of therapeutic antibodies for emerging viral diseases, autoimmune disorders, and cancer.


Assuntos
Anti-Infecciosos/imunologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Genômica/métodos , Microfluídica/métodos , Sequência de Aminoácidos , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/metabolismo , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/imunologia
12.
ACS Chem Biol ; 8(4): 832-9, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23394403

RESUMO

ADARs (adenosine deaminases acting on RNA) are RNA editing enzymes that bind double helical RNAs and deaminate select adenosines (A). The product inosine (I) is read during translation as guanosine (G), so such changes can alter codon meaning. ADAR-catalyzed A to I changes occur in coding sequences for several proteins of importance to the nervous system. However, these sites constitute only a very small fraction of known A to I sites in the human transcriptome, and the significance of editing at the vast majority sites is unknown at this time. Site-selective inhibitors of RNA editing are needed to advance our understanding of the function of editing at specific sites. Here we show that 2'-O-methyl/locked nucleic acid (LNA) mixmer antisense oligonucleotides are potent and selective inhibitors of RNA editing on two different target RNAs. These reagents are capable of binding with high affinity to RNA editing substrates and remodeling the secondary structure by a strand-invasion mechanism. The potency observed here for 2'-O-methyl/LNA mixmers suggests this backbone structure is superior to the morpholino backbone structure for inhibition of RNA editing. Finally, we demonstrate antisense inhibition of editing of the mRNA for the DNA repair glycosylase NEIL1 in cultured human cells, providing a new approach to exploring the link between RNA editing and the cellular response to oxidative DNA damage.


Assuntos
Ácidos Nucleicos/química , Edição de RNA/efeitos dos fármacos , RNA Antissenso/farmacologia , Sequência de Bases , Células HeLa , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Mensageiro/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa