Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genome ; 61(7): 539-547, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29852082

RESUMO

WD40 repeat proteins are largely distributed across the plant kingdom and play an important role in diverse biological activities. In this work, we performed genome-wide identification, characterization, and expression level analysis of WD40 genes in cotton. A total of 579, 318, and 313 WD40 genes were found in Gossypium hirsutum, G. arboreum, and G. raimondii, respectively. Based on phylogenetic tree analyses, WD40 genes were divided into 11 groups with high similarities in exon/intron features and protein domains within the group. Expression analysis of WD40 genes showed differential expression at different stages of cotton fiber development (0 and 8 DPA) and cotton stem. A number of miRNAs were identified to target WD40 genes that are significantly involved in cotton fiber development during the initiation and elongation stages. These include miR156, miR160, miR162, miR164, miR166, miR167, miR169, miR171, miR172, miR393, miR396, miR398, miR2950, and miR7505. The findings provide a stronger indication of WD40 gene function and their involvement in the regulation of cotton fiber development during the initiation and elongation stages.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Gossypium/genética , Família Multigênica , Proteínas de Plantas/genética , Fibra de Algodão , Perfilação da Expressão Gênica/métodos , Gossypium/classificação , MicroRNAs/genética , Filogenia , Proteínas de Plantas/classificação , RNA de Plantas/genética , Especificidade da Espécie , Repetições WD40/genética
2.
Proc Natl Acad Sci U S A ; 108(46): 18796-801, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22065788

RESUMO

Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections--S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30-80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples-S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2-12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent-S108T (90%), with A16V and the 108T+16V double mutant (49-57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles.


Assuntos
Malária/metabolismo , Plasmodium falciparum/enzimologia , Polimorfismo Genético , Tetra-Hidrofolato Desidrogenase/genética , Alelos , Animais , Anopheles , Sequência de Bases , Enzimas de Restrição do DNA/metabolismo , Resistência a Medicamentos , Antagonistas do Ácido Fólico/farmacologia , Humanos , Dados de Sequência Molecular , Mutação , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Zâmbia
3.
Malar J ; 7: 185, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18811949

RESUMO

BACKGROUND: Plasmodium falciparum genotyping with molecular polymorphic markers is widely employed to distinguish recrudescence from re-infection in antimalarial drug efficacy monitoring programmes. However, limitations occur on agarose gel DNA measurements used to resolve the polymorphisms. Without empirical data, the current distinction of pre- and post-treatment bands, as persistent or new infection, is subjective and often varying by author. This study measures empirical tolerance limits for classifying different-sized bands as same or different alleles during MSP2 genotyping. METHODS: P. falciparum field samples from 161 volunteers were genotyped by nested PCR using polymorphic MSP2 family-specific primers. Data were analysed to determine variability of band size measurements between identical MSP2 alleles randomized into different agarose lanes. RESULTS: The mean (95% CI) paired difference in band size between identical alleles was 9.8 bp (1.48 - 18.16 bp, p = 0.022) for 3D7/IC and 2.54 (-3.04 - 8.05 bp, p = 0.362) for FC27. Based on these findings, pre- and post-treatment samples with 3D7/IC alleles showing less than 18 bp difference corresponded to recrudescence, with 95% confidence, while greater difference indicated new infection. FC27 allele differences were much narrower. For both 3D7/IC and FC27 amplicon, allele detection sensitivity was significantly higher with 13 mul compared to 20 mul or 30 mul lane loading volumes. CONCLUSION: During MSP genotyping, it is useful to standardize classifications against measurement of background variability on identical alleles, in order to obtain reliable findings. It is critical to use a fixed optimal lane loading volume for constant allele patency, to avoid the disappearance or false appearance of new infection.


Assuntos
Antígenos de Protozoários/genética , Impressões Digitais de DNA/normas , Eletroforese em Gel de Ágar/normas , Malária Falciparum/parasitologia , Plasmodium falciparum/classificação , Reação em Cadeia da Polimerase/métodos , Proteínas de Protozoários/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Polimorfismo Genético , Recidiva , Reprodutibilidade dos Testes
4.
Malar J ; 7: 87, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18495008

RESUMO

BACKGROUND: In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. METHODS: A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. RESULTS: Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. CONCLUSION: This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Malária Falciparum/parasitologia , Mutação de Sentido Incorreto , Plasmodium falciparum/efeitos dos fármacos , Animais , Criança , Pré-Escolar , DNA de Protozoário/genética , Humanos , Malária Falciparum/epidemiologia , Peptídeo Sintases/genética , Plasmodium falciparum/isolamento & purificação , Mutação Puntual , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Proguanil/farmacologia , Proteínas de Protozoários/genética , Pirimetamina/farmacologia , População Rural , Tetra-Hidrofolato Desidrogenase/genética , Triazinas/farmacologia , Zâmbia/epidemiologia
5.
J Vis Exp ; (71)2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23328684

RESUMO

Endemic countries are increasingly adopting molecular tools for efficient typing, identification and surveillance against malaria parasites and vector mosquitoes, as an integral part of their control programs. For sustainable establishment of these accurate approaches in operations research to strengthen malaria control and elimination efforts, simple and affordable methods, with parsimonious reagent and equipment requirements are essential. Here we present a simple Chelex-based technique for extracting malaria parasite and vector DNA from field collected mosquito specimens. We morphologically identified 72 Anopheles gambiae sl. from 156 mosquitoes captured by pyrethrum spray catches in sleeping rooms of households within a 2,000 km(2) vicinity of the Malaria Institute at Macha. After dissection to separate the head and thorax from the abdomen for all 72 Anopheles gambiae sl. mosquitoes, the two sections were individually placed in 1.5 ml microcentrifuge tubes and submerged in 20 µl of deionized water. Using a sterile pipette tip, each mosquito section was separately homogenized to a uniform suspension in the deionized water. Of the ensuing homogenate from each mosquito section, 10 µl was retained while the other 10 µl was transferred to a separate autoclaved 1.5 ml tube. The separate aliquots were subjected to DNA extraction by either the simplified Chelex or the standard salting out extraction protocol(9,10). The salting out protocol is so-called and widely used because it employs high salt concentrations in lieu of hazardous organic solvents (such as phenol and chloroform) for the protein precipitation step during DNA extraction(9). Extracts were used as templates for PCR amplification using primers targeting arthropod mitochondrial nicotinamide adenine dinucleotide dehydrogenase (NADH) subunit 4 gene (ND4) to check DNA quality, a PCR for identification of Anopheles gambiae sibling species(10) and a nested PCR for typing of Plasmodium falciparum infection. Comparison using DNA quality (ND4) PCR showed 93% sensitivity and 82% specificity for the Chelex approach relative to the established salting out protocol. Corresponding values of sensitivity and specificity were 100% and 78%, respectively, using sibling species identification PCR and 92% and 80%, respectively for P. falciparum detection PCR. There were no significant differences in proportion of samples giving amplicon signal with the Chelex or the regular salting out protocol across all three PCR applications. The Chelex approach required three simple reagents and 37 min to complete, while the salting out protocol entailed 10 different reagents and 2 hr and 47 min' processing time, including an overnight step. Our results show that the Chelex method is comparable to the existing salting out extraction and can be substituted as a simple and sustainable approach in resource-limited settings where a constant reagent supply chain is often difficult to maintain.


Assuntos
Anopheles/química , Anopheles/genética , DNA/genética , DNA/isolamento & purificação , Animais , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Plasmodium falciparum/química , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa