Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 86(5): 3768-3777, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33567820

RESUMO

Sulfuryl fluoride is a valuable reagent for the one-pot activation and derivatization of aliphatic alcohols, but the highly reactive alkyl fluorosulfate intermediates limit both the types of reactions that can be accessed as well as the scope. Herein, we report the SO2F2-mediated alcohol substitution and deoxygenation method that relies on the conversion of fluorosulfates to alkyl halide intermediates. This strategy allows the expansion of SO2F2-mediated one-pot processes to include radical reactions, where the alkyl halides can also be exploited in the one-pot deoxygenation of primary alcohols under mild conditions (52-95% yield). This strategy can also enhance the scope of substitutions to nucleophiles that are previously incompatible with one-pot SO2F2-mediated alcohol activation and enables substitution of primary and secondary alcohols in 54-95% yield. Chiral secondary alcohols undergo a highly stereospecific (90-98% ee) double nucleophilic displacement with an overall retention of configuration.

2.
Chemistry ; 26(22): 4958-4962, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32074386

RESUMO

The Mitsunobu reaction is a powerful transformation for the one-pot activation and substitution of aliphatic alcohols. Significant efforts have focused on modifying the classic conditions to overcome problems associated with purification from phosphine-based byproducts. Herein, we report a phosphine free method for alcohol activation and substitution that is mediated by sulfuryl fluoride. This new method is effective for a wide range of primary alcohols using phthalimide, di-tert-butyl-iminodicarboxylate, and aromatic thiol nucleophiles in 74 % average yield. Activated carbon nucleophiles and a deactivated phenol were also effective for this reaction in good yields. Secondary alcohols were also successful substrates using aryl thiols, affording the corresponding sulfides in 56 % average yield with enantiomeric ratios up to 99:1. This new protocol has a distinct synthetic advantage over many existing phosphine-based methods as the byproducts are readily separable. This feature was exploited in several examples that did not require chromatography for purification. Furthermore, the mild reaction conditions enabled further in situ derivatization for the one-pot conversion of alcohols to amines or sulfones. This method also provides a boarder nucleophile scope compared to existing phosphine-free methods.

3.
Chemistry ; 25(4): 976-980, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30350381

RESUMO

Tetrahydrophthalazine derivatives have found important applications in pharmaceutical research, but existing synthetic methods are unable to access them regio- and stereoselectively. Here, a new approach is presented that addresses these challenges by utilizing a 6-endo-trig radical cyclization in the key step. The desired tetrahydrophthalazines can be accessed in high yields (55-98 %) and high diastereoselectivities for the trans-product (>95:5) starting either from readily accessible hydrazones, or from the corresponding aldehydes and substituted Boc-hydrazides in a one-pot process. The synthetic versatility of the tetrahydrophthalazine core was demonstrated by its straightforward conversion to dihydro-phthalazines, phthalazines, or pyrazolo dione derivatives. Furthermore, the N-N bond was reduced to afford a new route to 1,4-diamines.

4.
Chem Sci ; 14(7): 1775-1780, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819869

RESUMO

Sulfur(vi) fluoride exchange chemistry has been reported to be effective at synthesizing valuable sulfur(vi) functionalities through sequential nucleophilic additions, yet oxygen-based nucleophiles are limited in this approach to phenolic derivatives. Herein, we report a new sulfur(iv) fluoride exchange strategy to access synthetically challenging substituted sulfamate esters from alkyl alcohols and amines. We also report the development of a non-gaseous, sulfur(iv) fluoride exchange reagent, N-methylimidazolium sulfinyl fluoride hexafluorophosphate (MISF). By leveraging the reactivity of the sulfur(iv) center of this novel reagent, the sequential addition of alcohols and amines to MISF followed by oxidation afforded the desired substituted sulfamates in 40-83% yields after two steps. This new strategy expands the scope of SuFEx chemistry by increasing the accessibility of underdeveloped -S(O)F intermediates for future explorations.

5.
ChemSusChem ; 13(14): 3622-3626, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32369260

RESUMO

The photoelectrochemical decomposition of lignin model compounds at a BiVO4 photoanode is demonstrated with simulated sunlight and an applied bias of 2.0 V. These prototypical lignin model compounds are photoelectrochemically converted into the corresponding aryl aldehyde and phenol derivatives in a single step with conversion of up to ≈64 % over 20 h. Control experiments suggest that vanadium sites are electrocatalytically active, which precludes the need for a redox mediator in solution. This feature of the system is corroborated by a layer of V2 O5 deposited on BiVO4 serving to boost the conversion by 10 %. Our methodology capitalizes on the reactive power of sunlight to drive reactions that have only been studied previously by electrochemical or catalytic methods. The use of a BiVO4 photoanode to drive lignin model decomposition therefore provides a new platform to extract valuable aromatic chemical feedstocks using solar energy, electricity and biomass as the only inputs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa