Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L440-L457, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150547

RESUMO

We assessed the mechanisms by which nonencapsulated heme, released in the plasma of mice after exposure to chlorine (Cl2) gas, resulted in the initiation and propagation of acute lung injury. We exposed adult male and female C57BL/6 mice to Cl2 (500 ppm for 30 min), returned them to room air, and injected them intramuscularly with either human hemopexin (hHPX; 5 µg/g BW in 50-µL saline) or vehicle at 1 h post-exposure. Upon return to room air, Cl2-exposed mice, injected with vehicle, developed respiratory acidosis, increased concentrations of plasma proteins in the alveolar space, lung mitochondrial DNA injury, increased levels of free plasma heme, and major alterations of their lung proteome. hHPX injection mice mitigated the onset and development of lung and mitochondrial injury and the increase of plasma heme, reversed the Cl2-induced changes in 83 of 237 proteins in the lung proteome at 24 h post-exposure, and improved survival at 15 days post-exposure. Systems biology analysis of the lung global proteomics data showed that hHPX reversed changes in a number of key pathways including elF2 signaling, verified by Western blotting measurements. Recombinant human hemopexin, generated in tobacco plants, injected at 1 h post-Cl2 exposure, was equally effective in reversing acute lung and mtDNA injury. The results of this study offer new insights as to the mechanisms by which exposure to Cl2 results in acute lung injury and the therapeutic effects of hemopexin.NEW & NOTEWORTHY Herein, we demonstrate that exposure of mice to chlorine gas causes significant changes in the lung proteome 24 h post-exposure. Systems biology analysis of the proteomic data is consistent with damage to mitochondria and activation of eIF2, the master regulator of transcription and protein translation. Post-exposure injection of hemopexin, which scavenges free heme, attenuated mtDNA injury, eIF2α phosphorylation, decreased lung injury, and increased survival.


Assuntos
Lesão Pulmonar Aguda , Cloro , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Cloro/efeitos adversos , Cloro/metabolismo , DNA Mitocondrial/metabolismo , Heme , Hemopexina , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias , Proteoma/metabolismo , Proteômica
2.
J Pharmacol Exp Ther ; 388(2): 518-525, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37914413

RESUMO

Nitrogen mustard (NM) is a known surrogate of sulfur mustard, a chemical-warfare agent that causes a wide range of ocular symptoms, from a permanent reduction in visual acuity to blindness upon exposure. Although it has been proposed that the two blistering agents have a similar mechanism of toxicity, the mode of NM-induced cell death in ocular tissue has not been fully explored. Therefore, we hypothesized that direct ocular exposure to NM in mice leads to retinal tissue injury through chronic activation of the unfolded protein response (UPR) PERK arm in corneal cells and VEGF secretion, eventually causing cell death. We topically applied NM directly to mice to analyze ocular and retinal tissues at 2 weeks postexposure. A dramatic decline in retinal function, measured by scotopic and photopic electroretinogram responses, was detected in the mice. This decline was associated with enhanced TUNEL staining in both corneal and retinal tissues. In addition, exposure of corneal cells to NM revealed 228 differentially and exclusively expressed proteins primarily associated with the UPR, ferroptosis, and necroptosis. Moreover, these cells exhibited activation of the UPR PERK arm and an increase in VEGF secretion. Enhancement of VEGF staining was later observed in the corneas of the exposed mice. Therefore, our data indicated that the mechanism of NM-induced ocular toxicity should be carefully examined and that future research should identify a signaling molecule transmitted via a prodeath pathway from the cornea to the retina. SIGNIFICANCE STATEMENT: This study demonstrated that NM topical exposure in mice results in dramatic decline in retinal function associated with enhanced TUNEL staining in both corneal and retinal tissues. We also found that the NM treatment of corneal cells resulted in 228 differentially and exclusively expressed proteins primarily associated with ferroptosis. Moreover, these cells manifest the UPR PERK activation and an increase in VEGF secretion. The latter was also found in the corneas of the cexposed mice.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Camundongos , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neuropatia Óptica Tóxica , Córnea , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Resposta a Proteínas não Dobradas
3.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L413-L432, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719087

RESUMO

The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants, COVID-19 has led to 651,918,402 confirmed cases and 6,656,601 deaths worldwide (as of December 27, 2022; https://covid19.who.int/). Despite advances in our understanding of COVID-19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in the proteome of alveolar type II (ATII)-like rat L2 cells that lack ACE2 receptors. Systems biology analysis revealed that the S1-induced proteomics changes were associated with three significant network hubs: E2F1, CREB1/RelA, and ROCK2/RhoA. We also found that pretreatment of L2 cells with high molecular weight hyaluronan (HMW-HA) greatly attenuated the S1 effects on the proteome. Western blotting analysis and cell cycle measurements confirmed the S1 upregulation of E2F1 and ROCK2/RhoA in L2 cells and the protective effects of HMW-HA. Taken as a whole, our studies revealed profound and novel biological changes that contribute to our current understanding of both S1 and hyaluronan biology. These data show that the S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV-2-induced cell injury.


Assuntos
COVID-19 , Animais , Humanos , Ratos , Ácido Hialurônico , Pandemias , Peptidil Dipeptidase A/metabolismo , Proteoma , Proteômica , RNA Viral , SARS-CoV-2/metabolismo
4.
Transfusion ; 63(3): 586-600, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36752125

RESUMO

BACKGROUND: The formation of extracellular vesicles (EVs) occurs during cold storage of RBCs. Transfusion of EVs may contribute to adverse responses in recipients receiving RBCs. However, EVs are poorly characterized with limited data on whether distinct vesicles are formed, their composition, and potential biological effects. STUDY DESIGN AND METHODS: Stored RBC-derived EVs were purified using protocols that separate larger microvesicle-like EVs (LEVs) from smaller exosome-like vesicles (SEVs). Vesicles were analyzed by electron microscopy, content of hemoglobin, heme, and proteins (by mass spectrometry), and the potential to mediate lipid peroxidation and endothelial cell permeability in vitro. RESULTS: SEVs were characterized by having an electron-dense double membrane whereas LEVs had more uniform electron density across the particles. No differences in hemoglobin nor heme levels per particle were observed, however, due to smaller volumes, SEVs had higher concentrations of oxyHb and heme. Both particles contained antioxidant proteins peroxiredoxin-2 and copper/zinc superoxide dismutase, these were present in higher molecular weight fractions in SEVs suggesting either oxidized proteins are preferentially packaged into smaller vesicles and/or that the environment associated with SEVs is more pro-oxidative. Furthermore, total glutathione (GSH + GSSG) levels were lower in SEVs. Both EVs mediated oxidation of liposomes that were prevented by hemopexin, identifying heme as the pro-oxidant effector. Addition of SEVs, but not LEVs, induced endothelial permeability in a process also prevented by hemopexin. CONCLUSION: These data show that distinct EVs are formed during cold storage of RBCs with smaller particles being more likely to mediate pro-oxidant and inflammatory effects associated with heme.


Assuntos
Vesículas Extracelulares , Hemopexina , Humanos , Hemopexina/análise , Hemopexina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vesículas Extracelulares/metabolismo , Eritrócitos/metabolismo , Hemoglobinas/análise , Heme/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(31): 18401-18411, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690709

RESUMO

Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses. Here, we show that Cdk5 drives growth in subgroups of patients with multiple types of neuroendocrine neoplasms. Phosphoproteomics and high throughput screening identified phosphorylation sites downstream of Cdk5. These phosphorylation events serve as biomarkers and effectively pinpoint Cdk5-driven tumors. Toward achieving targeted therapy, we demonstrate that mouse models of neuroendocrine cancer are responsive to selective Cdk5 inhibitors and biomimetic nanoparticles are effective vehicles for enhanced tumor targeting and reduction of drug toxicity. Finally, we show that biomarkers of Cdk5-dependent tumors effectively predict response to anti-Cdk5 therapy in patient-derived xenografts. Thus, a phosphoprotein-based diagnostic assay combined with Cdk5-targeted therapy is a rational treatment approach for neuroendocrine malignancies.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tumores Neuroectodérmicos/tratamento farmacológico , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosforilação
6.
J Biol Chem ; 295(6): 1754-1766, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31901078

RESUMO

Ten-eleven translocation-2 (TET2) is a member of the methylcytosine dioxygenase family of enzymes and has been implicated in cancer and aging because of its role as a global epigenetic modifier. TET2 has a large N-terminal domain and a catalytic C-terminal region. Previous reports have demonstrated that the TET2 catalytic domain remains active independently of the N-terminal domain. As such, the function of the N terminus of this large protein remains poorly characterized. Here, using yeast two-hybrid screening, co-immunoprecipitation, and several biochemical assays, we found that several isoforms of the 14-3-3 family of proteins bind TET2. 14-3-3 proteins bound TET2 when it was phosphorylated at Ser-99. In particular, we observed that AMP-activated protein kinase-mediated phosphorylation at Ser-99 promotes TET2 stability and increases global DNA 5-hydroxymethylcytosine levels. The interaction of 14-3-3 proteins with TET2 protected the Ser-99 phosphorylation, and disruption of this interaction both reduced TET2 phosphorylation and decreased TET2 stability. Furthermore, we noted that protein phosphatase 2A can interact with TET2 and dephosphorylate Ser-99. Collectively, these results provide detailed insights into the role of the TET2 N-terminal domain in TET2 regulation. Moreover, they reveal the dynamic nature of TET2 protein regulation that could have therapeutic implications for disease states resulting from reduced TET2 levels or activity.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Dioxigenases , Células HEK293 , Humanos , Camundongos , Fosforilação , Ligação Proteica , Isoformas de Proteínas/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L337-L359, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579402

RESUMO

Bromine (Br2) is an organohalide found in nature and is integral to many manufacturing processes. Br2 is toxic to living organisms, and high concentrations can prove fatal. To meet industrial demand, large amounts of purified Br2 are produced, transported, and stored worldwide, providing a multitude of interfaces for potential human exposure through either accidents or terrorism. To identify the key mechanisms associated with acute Br2 exposure, we have surveyed the lung proteomes of C57BL/6 male mice and human lung-derived microvascular endothelial cells (HMECs) at 24 h following exposure to Br2 in concentrations likely to be encountered in the vicinity of industrial accidents. Global discovery proteomics applications combined with systems biology analysis identified robust and highly significant changes in proteins associated with three biological processes: 1) exosome secretion, 2) inflammation, and 3) vascular permeability. We focused on the latter, conducting physiological studies on isolated perfused lungs harvested from mice 24 h after Br2 exposure. These experiments revealed significant increases in the filtration coefficient (Kf) indicating increased permeability of the pulmonary vasculature. Similarly, confluent monolayers of Br2 and Br-lipid-treated HMECs exhibited differential levels of zona occludens-1 that were found to be dissociated from cell wall localization, an increase in phosphorylation and internalization of E-cadherin, as well as increased actin stress fiber formation, all of which are consistent with increased permeability. Taken as a whole, our discovery proteomics and systems analysis workflow, combined with physiological measurements of permeability, revealed both profound and novel biological changes that contribute to our current understanding of Br2 toxicity.


Assuntos
Bromo/toxicidade , Permeabilidade Capilar/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Animais , Caderinas/metabolismo , Permeabilidade Capilar/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/metabolismo , Proteoma/metabolismo
8.
Proteomics ; 19(11): e1800334, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30908848

RESUMO

Loss of NF1 is an oncogenic driver. In efforts to define pathways responsible for the development of neurofibromas and other cancers, transcriptomic and proteomic changes are evaluated in a non-malignant NF1 null cell line. NF1 null HEK293 cells were created using CRISPR/Cas9 technology and they are compared to parental cells that express neurofibromin. A total of 1222 genes and 132 proteins are found to be differentially expressed. The analysis is integrated to identify eight transcripts/proteins that are differentially regulated in both analyses. Metacore Pathway analysis identifies Neurogenesis NGF/TrkA MAPK-mediated signaling alterations. Next, the data set is compared with other published studies that involve analysis of cells or tumors deficient for NF1 and it is found that 141 genes recur in the sample and others; only thirteen of these genes recur in two or more studies. Genes/proteins of interest are validated via q-RT-PCR or Western blot. It is shown that KRT8 and 14-3-3σ protein levels respond to exogenously introduced mNf1 cDNA. Hence, transcripts/proteins that respond to neurofibromin levels are identified and they can potentially be used as biomarkers.


Assuntos
Sistemas CRISPR-Cas , Neurofibromina 1/genética , Proteômica/métodos , Transcriptoma , Regulação da Expressão Gênica , Células HEK293 , Humanos , Neurogênese , Transdução de Sinais
9.
Am J Respir Cell Mol Biol ; 60(3): 279-288, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30321056

RESUMO

Extracellular vesicles (EVs) are endosome and plasma membrane-derived nano-sized vesicles that participate in intercellular signaling. Although EV cargo may signal via multiple mechanisms, how signaling components on the surface of EVs mediate cellular signaling is less well understood. In this study, we show that fibroblast-derived EVs carry fibronectin on the vesicular surface, as evidenced by mass spectrometry-based proteomics (Sequential Window Acquisition of all Theoretical Mass Spectra) and flow-cytometric analyses. Fibroblasts undergoing replicative senescence or transforming growth factor ß1-induced senescence and fibroblasts isolated from human subjects with an age-related lung disorder, idiopathic pulmonary fibrosis, secreted higher numbers of EVs than their respective controls. Fibroblast-derived EVs induced an invasive phenotype in recipient fibroblasts. This invasive fibroblast phenotype was dependent on EV surface localization of fibronectin, interaction with the fibronectin receptor α5ß1 integrin, and activation of invasion-associated signaling pathways involving focal adhesion kinase and Src family kinases. EVs in the cellular supernatant, unbound to the extracellular matrix, were capable of mediating invasion signaling on recipient fibroblasts, supporting a direct interaction of EV surface fibronectin with the plasma membrane of recipient cells. Together, these studies uncover a novel mechanism of EV signaling of fibroblast invasion that may be relevant in the pathogenesis of fibrotic diseases and cancer.


Assuntos
Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Senescência Celular/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Integrina alfa5beta1/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Quinases da Família src/metabolismo
10.
Hum Mol Genet ; 26(16): 3116-3129, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28575328

RESUMO

In-frame premature termination codons (PTCs) account for ∼11% of all disease-associated mutations. PTC suppression therapy utilizes small molecules that suppress translation termination at a PTC to restore synthesis of a full-length protein. PTC suppression is mediated by the base pairing of a near-cognate aminoacyl-tRNA with a PTC and subsequently, the amino acid becomes incorporated into the nascent polypeptide at the site of the PTC. However, little is known about the identity of the amino acid(s) inserted at a PTC during this process in mammalian cells, or how the surrounding sequence context influences amino acid incorporation. Here, we determined the amino acids inserted at the cystic fibrosis transmembrane conductance regulator (CFTR) W1282X PTC (a UGA codon) in the context of its three upstream and downstream CFTR codons during G418-mediated suppression. We found that leucine, cysteine and tryptophan are inserted during W1282X suppression. Interestingly, these amino acids (and their proportions) are significantly different from those recently identified following G418-mediated suppression of the CFTR G542X UGA mutation. These results demonstrate for the first time that local mRNA sequence context plays a key role in near-cognate aminoacyl-tRNA selection during PTC suppression. We also found that some variant CFTR proteins generated by PTC suppression exhibit reduced maturation and activity, indicating the complexity of nonsense suppression therapy. However, both a CFTR corrector and potentiator enhanced activity of protein variants generated by G418-mediated suppression. These results suggest that PTC suppression in combination with CFTR modulators may be beneficial for the treatment of CF patients with PTCs.


Assuntos
Aminoácidos/genética , Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Aminoácidos/metabolismo , Códon , Cisteína/genética , Cisteína/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Genes Supressores , Células HEK293 , Humanos , Leucina/genética , Leucina/metabolismo , Mutação , Biossíntese de Proteínas , Triptofano/genética , Triptofano/metabolismo
11.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899097

RESUMO

Alphaviruses are widely distributed in both hemispheres and circulate between mosquitoes and amplifying vertebrate hosts. Geographically separated alphaviruses have adapted to replication in particular organisms. The accumulating data suggest that this adaptation is determined not only by changes in their glycoproteins but also by the amino acid sequence of the hypervariable domain (HVD) of the alphavirus nsP3 protein. We performed a detailed investigation of chikungunya virus (CHIKV) nsP3 HVD interactions with host factors and their roles in viral replication in vertebrate and mosquito cells. The results demonstrate that CHIKV HVD is intrinsically disordered and binds several distinctive cellular proteins. These host factors include two members of the G3BP family and their mosquito homolog Rin, two members of the NAP1 family, and several SH3 domain-containing proteins. Interaction with G3BP proteins or Rin is an absolute requirement for CHIKV replication, although it is insufficient to solely drive it in either vertebrate or mosquito cells. To achieve a detectable level of virus replication, HVD needs to bind members of at least one more protein family in addition to G3BPs. Interaction with NAP1L1 and NAP1L4 plays a more proviral role in vertebrate cells, while binding of SH3 domain-containing proteins to a proline-rich fragment of HVD is more critical for virus replication in the cells of mosquito origin. Modifications of binding sites in CHIKV HVD allow manipulation of the cell specificity of CHIKV replication. Similar changes may be introduced into HVDs of other alphaviruses to alter their replication in particular cells or tissues.IMPORTANCE Alphaviruses utilize a broad spectrum of cellular factors for efficient formation and function of replication complexes (RCs). Our data demonstrate for the first time that the hypervariable domain (HVD) of chikungunya virus nonstructural protein 3 (nsP3) is intrinsically disordered. It binds at least 3 families of cellular proteins, which play an indispensable role in viral RNA replication. The proteins of each family demonstrate functional redundancy. We provide a detailed map of the binding sites on CHIKV nsP3 HVD and show that mutations in these sites or the replacement of CHIKV HVD by heterologous HVD change cell specificity of viral replication. Such manipulations with alphavirus HVDs open an opportunity for development of new irreversibly attenuated vaccine candidates. To date, the disordered protein fragments have been identified in the nonstructural proteins of many other viruses. They may also interact with a variety of cellular factors that determine critical aspects of virus-host interactions.


Assuntos
Vírus Chikungunya/fisiologia , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Vírus Chikungunya/química , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Culicidae , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Domínios Proteicos , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral
12.
Proc Natl Acad Sci U S A ; 113(44): 12508-12513, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702906

RESUMO

A premature termination codon (PTC) in the ORF of an mRNA generally leads to production of a truncated polypeptide, accelerated degradation of the mRNA, and depression of overall mRNA expression. Accordingly, nonsense mutations cause some of the most severe forms of inherited disorders. The small-molecule drug ataluren promotes therapeutic nonsense suppression and has been thought to mediate the insertion of near-cognate tRNAs at PTCs. However, direct evidence for this activity has been lacking. Here, we expressed multiple nonsense mutation reporters in human cells and yeast and identified the amino acids inserted when a PTC occupies the ribosomal A site in control, ataluren-treated, and aminoglycoside-treated cells. We find that ataluren's likely target is the ribosome and that it produces full-length protein by promoting insertion of near-cognate tRNAs at the site of the nonsense codon without apparent effects on transcription, mRNA processing, mRNA stability, or protein stability. The resulting readthrough proteins retain function and contain amino acid replacements similar to those derived from endogenous readthrough, namely Gln, Lys, or Tyr at UAA or UAG PTCs and Trp, Arg, or Cys at UGA PTCs. These insertion biases arise primarily from mRNA:tRNA mispairing at codon positions 1 and 3 and reflect, in part, the preferred use of certain nonstandard base pairs, e.g., U-G. Ataluren's retention of similar specificity of near-cognate tRNA insertion as occurs endogenously has important implications for its general use in therapeutic nonsense suppression.


Assuntos
Códon sem Sentido/genética , Oxidiazóis/farmacologia , RNA de Transferência/genética , Ribossomos/efeitos dos fármacos , Células HEK293 , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transcrição Gênica/efeitos dos fármacos
13.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468889

RESUMO

Eastern equine encephalitis virus (EEEV) is a representative member of the New World alphaviruses. It is pathogenic for a variety of vertebrate hosts, in which EEEV induces a highly debilitating disease, and the outcomes are frequently lethal. Despite a significant public health threat, the molecular mechanism of EEEV replication and interaction with hosts is poorly understood. Our previously published data and those of other teams have demonstrated that hypervariable domains (HVDs) of the alphavirus nsP3 protein interact with virus-specific host factors and play critical roles in assembly of viral replication complexes (vRCs). The most abundantly represented HVD-binding proteins are the FXR and G3BP family members. FXR proteins drive the assembly of vRCs of Venezuelan equine encephalitis virus (VEEV), and G3BPs were shown to function in vRC assembly in the replication of chikungunya and Sindbis viruses. Our new study demonstrates that EEEV exhibits a unique level of redundancy in the use of host factors in RNA replication. EEEV efficiently utilizes both the VEEV-specific FXR protein family and the Old World alphavirus-specific G3BP protein family. A lack of interaction with either FXRs or G3BPs does not affect vRC formation; however, removal of EEEV's ability to interact with both protein families has a deleterious effect on virus growth. Other identified EEEV nsP3 HVD-interacting host proteins are also capable of supporting EEEV replication, albeit with a dramatically lower efficiency. The ability to use a wide range of host factors with redundant functions in vRC assembly and function provides a plausible explanation for the efficient replication of EEEV and may contribute to its highly pathogenic phenotype.IMPORTANCE Eastern equine encephalitis virus (EEEV) is one of the most pathogenic New World alphaviruses. Despite the continuous public health threat, to date, the molecular mechanisms of its very efficient replication and high virulence are not sufficiently understood. The results of this new study demonstrate that North American EEEV exhibits a high level of redundancy in using host factors in replication complex assembly and virus replication. The hypervariable domain of the EEEV nsP3 protein interacts with all of the members of the FXR and G3BP protein families, and only a lack of interaction with both protein families strongly affects virus replication rates. Other identified HVD-binding factors are also involved in EEEV replication, but their roles are not as critical as those of FXRs and G3BPs. The new data present a plausible explanation for the exceptionally high replication rates of EEEV and suggest a new means of its attenuation and new targets for screening of antiviral drugs.


Assuntos
Vírus da Encefalite Equina do Leste/fisiologia , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular
14.
PLoS Pathog ; 12(8): e1005810, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509095

RESUMO

The positive-strand RNA viruses initiate their amplification in the cell from a single genome delivered by virion. This single RNA molecule needs to become involved in replication process before it is recognized and degraded by cellular machinery. In this study, we show that distantly related New World and Old World alphaviruses have independently evolved to utilize different cellular stress granule-related proteins for assembly of complexes, which recruit viral genomic RNA and facilitate formation of viral replication complexes (vRCs). Venezuelan equine encephalitis virus (VEEV) utilizes all members of the Fragile X syndrome (FXR) family, while chikungunya and Sindbis viruses exploit both members of the G3BP family. Despite being in different families, these proteins share common characteristics, which determine their role in alphavirus replication, namely, the abilities for RNA-binding and for self-assembly into large structures. Both FXR and G3BP proteins interact with virus-specific, repeating amino acid sequences located in the C-termini of hypervariable, intrinsically disordered domains (HVDs) of viral nonstructural protein nsP3. We demonstrate that these host factors orchestrate assembly of vRCs and play key roles in RNA and virus replication. Only knockout of all of the homologs results in either pronounced or complete inhibition of replication of different alphaviruses. The use of multiple homologous proteins with redundant functions mediates highly efficient recruitment of viral RNA into the replication process. This independently evolved acquisition of different families of cellular proteins by the disordered protein fragment to support alphavirus replication suggests that other RNA viruses may utilize a similar mechanism of host factor recruitment for vRC assembly. The use of different host factors by alphavirus species may be one of the important determinants of their pathogenesis.


Assuntos
Vírus Chikungunya/fisiologia , Vírus da Encefalite Equina Venezuelana/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Sindbis virus/fisiologia , Replicação Viral/fisiologia , Animais , Proteínas de Transporte/metabolismo , DNA Helicases , Técnicas de Inativação de Genes , Hibridização In Situ , Camundongos , Microscopia Confocal , Células NIH 3T3 , Proteínas de Ligação a Poli-ADP-Ribose , Reação em Cadeia da Polimerase , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas não Estruturais Virais/metabolismo
15.
FASEB J ; 31(4): 1608-1619, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28069826

RESUMO

Androgen-deprivation therapy has been identified to induce oxidative stress in prostate cancer (PCa), leading to reactivation of androgen receptor (AR) signaling in a hormone-refractory manner. Thus, antioxidant therapies have gained attention as adjuvants for castration-resistant PCa. Here, we report for the first time that human endostatin (ES) prevents androgen-independent growth phenotype in PCa cells through its molecular targeting of AR and glucocorticoid receptor (GR) and downstream pro-oxidant signaling. This reversal after ES treatment significantly decreased PCa cell proliferation through down-regulation of GR and up-regulation of manganese superoxide dismutase and reduced glutathione levels. Proteome and biochemical analyses of ES-treated PCa cells further indicated a significant up-regulation of enzymes in the major reactive oxygen species (ROS) scavenging machinery, including catalase, glutathione synthetase, glutathione reductase, NADPH-cytochrome P450 reductase, biliverdin reductase, and thioredoxin reductase, resulting in a concomitant reduction of intracellular ROS. ES further augmented the antioxidant system through up-regulation of glucose influx, the pentose phosphate pathway, and NAD salvaging pathways. This shift in cancer cell redox homeostasis by ES significantly decreased the effect of protumorigenic oxidative machinery on androgen-independent PCa growth, suggesting that ES can suppress GR-induced resistant phenotype upon AR antagonism and that the dual targeting action of ES on AR and GR can be further translated to PCa therapy.-Lee, J. H., Kang, M., Wang, H., Naik, G., Mobley, J. A., Sonpavde, G., Garvey, W. T., Darley-Usmar, V. M., Ponnazhagan, S. Endostatin inhibits androgen-independent prostate cancer growth by suppressing nuclear receptor-mediated oxidative stress.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Endostatinas/farmacologia , Estresse Oxidativo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Catalase/genética , Catalase/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Humanos , Masculino , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Receptores de Glucocorticoides/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
16.
Connect Tissue Res ; 59(sup1): 55-61, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29471680

RESUMO

Purpose/Aim: Elevated serum phosphate is one of the major factors contributing to vascular calcification. Studies suggested that extracellular vesicles released from vascular smooth muscle cells significantly contribute to the initiation and progression of this pathology. Recently, we have demonstrated that elevated phosphate stimulates release of extracellular vesicles from osteogenic cells at the initiation of the mineralization process. Here, we used MOVAS cell line as an in vitro model of vascular calcification to examine whether vascular smooth muscle cells respond to high phosphate levels in a similar way and increase formation of extracellular vesicles. MATERIALS AND METHODS: Vesicles residing in extracellular matrix as well as vesicles released to culture medium were evaluated by nanoparticle tracking analyses. In addition, using mass spectrometry and protein profiling, protein composition of extracellular vesicles released by MOVAS cells under standard growth conditions and upon exposure to high phosphate was compared. RESULTS: Significant increase of the number of extracellular vesicles was detected after 72 h of exposure of cells to high phosphate. Elevated phosphate levels also affected protein composition of extracellular vesicles released from MOVAS cells. Finally, the comparative analyses of proteins in extracellular vesicles isolated from extracellular matrix and from conditioned medium identified significant differences in protein composition in these two groups of extracellular vesicles. CONCLUSIONS: Results of this study demonstrate that exposure of MOVAS cells to high phosphate levels stimulates the release of extracellular vesicles and changes their protein composition.


Assuntos
Vesículas Extracelulares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/metabolismo , Vesículas Extracelulares/patologia , Perfilação da Expressão Gênica , Humanos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosfatos/efeitos adversos , Fosfatos/farmacologia , Proteômica , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/patologia
17.
J Biol Chem ; 291(4): 1652-1663, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26601950

RESUMO

Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.


Assuntos
Comunicação Celular , Exossomos/metabolismo , Fibronectinas/metabolismo , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Exossomos/genética , Fibronectinas/genética , Heparina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/fisiopatologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Hum Mol Genet ; 24(15): 4250-67, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25926623

RESUMO

The Leucine rich repeat kinase 2 (LRRK2) gene is genetically and biochemically linked to several diseases that involve innate immunity. LRRK2 protein is highly expressed in phagocytic cells of the innate immune system, most notably in myeloid cells capable of mounting potent pro-inflammatory responses. Knockdown of LRRK2 protein in these cells reduces pro-inflammatory responses. However, the effect of LRRK2 pathogenic mutations that cause Parkinson's disease on myeloid cell function is not clear but could provide insight into LRRK2-linked disease. Here, we find that rats expressing G2019S LRRK2 have exaggerated pro-inflammatory responses and subsequent neurodegeneration after lipopolysaccharide injections in the substantia nigra, with a marked increase in the recruitment of CD68 myeloid cells to the site of injection. While G2019S LRRK2 expression did not affect immunological homeostasis, myeloid cells expressing G2019S LRRK2 show enhanced chemotaxis both in vitro in two-chamber assays and in vivo in response to thioglycollate injections in the peritoneum. The G2019S mutation enhanced the association between LRRK2 and actin-regulatory proteins that control chemotaxis. The interaction between G2019S LRRK2 and actin-regulatory proteins can be blocked by LRRK2 kinase inhibitors, although we did not find evidence that LRRK2 phosphorylated these interacting proteins. These results suggest that the primary mechanism of G2019S LRRK2 with respect to myeloid cell function in disease may be related to exaggerated chemotactic responses.


Assuntos
Actinas/metabolismo , Imunidade Inata/genética , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Actinas/genética , Animais , Quimiotaxia/genética , Modelos Animais de Doenças , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação , Células Mieloides/metabolismo , Células Mieloides/patologia , Doença de Parkinson/patologia , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Substância Negra/metabolismo , Substância Negra/patologia
19.
Clin Immunol ; 181: 16-23, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28552470

RESUMO

HIV+ patients have an increased risk for tuberculosis disease despite clinical management with ARTs. We established a culture model of Mtb-infection in PBMCs from HIV+ PPD+ donors on suppressive ART (median 6.4years) with negligible viral loads (median<50copies/mL) and stable CD4+ T cell counts (517cells/mm^3). We observed that HIV+ patient lymphocytes harbored a recruitment defect to Mtb-infected monocytes. To investigate these immune defects on a per cell basis, purified CD4+ T cells from HIV patients were assessed by label-free quantification protein mass spectrometry. CD4+ T cells from HIV patients displayed diminished nucleoprotein levels - notably of histone variant H2a.Z and ribonucleoprotein A1. Only within healthy donors, transcriptional regulatory histone variant H2a.Z expression was correlated to the extent of IFN-γ induction upon Mtb-infection. Our findings may explain why HIV patients exhibit prolonged immune cell dysfunction despite suppressive ART, and implicate a per cell defect of CD4+ T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Tuberculose/imunologia , Adulto , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Feminino , Infecções por HIV/tratamento farmacológico , HIV-1 , Histonas/metabolismo , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Monócitos/microbiologia , Nucleoproteínas/metabolismo , Mapas de Interação de Proteínas , Carga Viral
20.
FASEB J ; 30(1): 336-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26396237

RESUMO

The leucine-rich repeat kinase (LRRK)-2 protein contains nonoverlapping GTPase and kinase domains, and mutation in either domain can cause Parkinson disease. GTPase proteins are critical upstream modulators of many effector protein kinases. In LRRK2, this paradigm may be reversed, as the kinase domain phosphorylates its own GTPase domain. In this study, we found that the ameba LRRK2 ortholog ROCO4 phosphorylates the GTPase domain [termed Ras-of-complex (ROC) domain in this family] of human LRRK2 on the same residues as the human LRRK2 kinase. Phosphorylation of ROC enhances its rate of GTP hydrolysis [from kcat (catalytic constant) 0.007 to 0.016 min(-1)], without affecting GTP or GDP dissociation kinetics [koff = 0.093 and 0.148 min(-1) for GTP and GDP, respectively). Phosphorylation also promotes the formation of ROC dimers, although GTPase activity appears to be equivalent between purified dimers and monomers. Modeling experiments show that phosphorylation induces conformational changes at the critical p-loop structure. Finally, ROC appears to be one of many GTPases phosphorylated in p-loop residues, as revealed by alignment of LRRK2 autophosphorylation sites with GTPases annotated in the phosphoproteome database. These results provide an example of a novel mechanism for kinase-mediated control of GTPase activity.


Assuntos
GTP Fosfo-Hidrolases/química , Proteínas Serina-Treonina Quinases/química , Sequência de Aminoácidos , Amoeba/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Dados de Sequência Molecular , Fosforilação , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa