Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 39(45): 8929-8939, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31548232

RESUMO

The histaminergic neurons of the tuberomammillary nucleus (TMNHDC) of the posterior hypothalamus have long been implicated in promoting arousal. More recently, a role for GABAergic signaling by the TMNHDC neurons in arousal control has been proposed. Here, we investigated the effects of selective chronic disruption of GABA synthesis (via genetic deletion of the GABA synthesis enzyme, glutamic acid decarboxylase 67) or GABAergic transmission (via genetic deletion of the vesicular GABA transporter (VGAT)) in the TMNHDC neurons on sleep-wake in male mice. We also examined the effects of acute chemogenetic activation and optogenetic inhibition of TMNHDC neurons upon arousal in male mice. Unexpectedly, we found that neither disruption of GABA synthesis nor GABAergic transmission altered hourly sleep-wake quantities, perhaps because very few TMNHDC neurons coexpressed VGAT. Acute chemogenetic activation of TMNHDC neurons did not increase arousal levels above baseline but did enhance vigilance when the mice were exposed to a behavioral cage change challenge. Similarly, acute optogenetic inhibition had little effect upon baseline levels of arousal. In conclusion, we could not identify a role for GABA release by TMNHDC neurons in arousal control. Further, if TMNHDC neurons do release GABA, the mechanism by which they do so remains unclear. Our findings support the view that TMNHDC neurons may be important for enhancing arousal under certain conditions, such as exposure to a novel environment, but play only a minor role in behavioral and EEG arousal under baseline conditions.SIGNIFICANCE STATEMENT The histaminergic neurons of the tuberomammillary nucleus of the hypothalamus (TMNHDC) have long been thought to promote arousal. Additionally, TMNHDC neurons may counter-regulate the wake-promoting effects of histamine through co-release of the inhibitory neurotransmitter, GABA. Here, we show that impairing GABA signaling from TMNHDC neurons does not impact sleep-wake amounts and that few TMNHDC neurons contain the vesicular GABA transporter, which is presumably required to release GABA. We further show that acute activation or inhibition of TMNHDC neurons has limited effects upon baseline arousal levels and that activation enhances vigilance during a behavioral challenge. Counter to general belief, our findings support the view that TMNHDC neurons are neither necessary nor sufficient for the initiation and maintenance of arousal under baseline conditions.


Assuntos
Nível de Alerta , Histamina/metabolismo , Região Hipotalâmica Lateral/fisiologia , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação , Animais , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Sono , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
2.
J Neurosci ; 33(23): 9734-42, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739970

RESUMO

Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of rapid eye movement sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal gray, lateral pontine tegmentum, locus ceruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knock-out mice, a model of narcolepsy. These lesions did not alter basic sleep-wake behavior but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Cataplexia/metabolismo , Cataplexia/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neuropeptídeos/deficiência , Animais , Cataplexia/patologia , Eletroencefalografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orexinas
3.
J Neurosci ; 33(23): 9743-51, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739971

RESUMO

Narcolepsy is characterized by chronic sleepiness and cataplexy, episodes of profound muscle weakness that are often triggered by strong, positive emotions. Narcolepsy with cataplexy is caused by a loss of orexin (also known as hypocretin) signaling, but almost nothing is known about the neural mechanisms through which positive emotions trigger cataplexy. Using orexin knock-out mice as a model of narcolepsy, we found that palatable foods, especially chocolate, markedly increased cataplexy and activated neurons in the medial prefrontal cortex (mPFC). Reversible suppression of mPFC activity using an engineered chloride channel substantially reduced cataplexy induced by chocolate but did not affect spontaneous cataplexy. In addition, neurons in the mPFC innervated parts of the amygdala and lateral hypothalamus that contain neurons active during cataplexy and that innervate brainstem regions known to regulate motor tone. These observations indicate that the mPFC is a critical site through which positive emotions trigger cataplexy.


Assuntos
Cacau , Cataplexia/metabolismo , Cataplexia/fisiopatologia , Córtex Pré-Frontal/fisiologia , Animais , Cataplexia/genética , Eletroencefalografia/métodos , Comportamento Alimentar/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Orexinas
4.
J Appl Toxicol ; 34(2): 205-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23349044

RESUMO

Cadmium (Cd) is a heavy metal widely used or effused by industries. Serious environmental Cd pollution has been reported over the past two centuries, whereas the mechanisms underlying Cd-mediated diseases are not fully understood. Interestingly, an increase in reactive oxygen species (ROS) after Cd exposure has been shown. Our group has demonstrated that sleep is triggered via accumulation of ROS during neuronal activities, and we thus hypothesize the involvement of Cd poisoning in sleep-wake irregularities. In the present study, we analyzed the effects of Cd intake (1-100 ppm CdCl2 in drinking water) on rats by monitoring sleep encephalograms and locomotor activities. The results demonstrated that 100 ppm CdCl2 administration for 28 h was sufficient to increase non-rapid-eye-movement (non-REM) sleep and reduce locomotor activities during the night (the rat active phase). In contrast, free-running locomotor rhythms under constant dim red light and their re-entrainment to 12:12-h light/dark cycles were intact under chronic (1 month) 100 ppm CdCl2 administrations, suggesting a limited influence on circadian clock movements at this dosage. The relative amount of oxidized glutathione increased in the brain after the 28-h 100 ppm CdCl2 administrations similar to the levels in cultured astrocytes receiving H2O2 or CdCl2 in culture medium. Therefore, we propose Cd-induced sleep as a consequence of oxidative stress. As oxidized glutathione is an endogenous sleep substance, we suggest that Cd rapidly induces sleepiness and influences activity performance by occupying intrinsic sleep-inducing mechanisms. In conclusion, we propose increased non-REM sleep during the active phase as an index of acute Cd exposure.


Assuntos
Cloreto de Cádmio/administração & dosagem , Cloreto de Cádmio/efeitos adversos , Água Potável/química , Fases do Sono/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(11): 4471-6, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368172

RESUMO

Narcolepsy is caused by a loss of orexin/hypocretin signaling, resulting in chronic sleepiness, fragmented non-rapid eye movement sleep, and cataplexy. To identify the neuronal circuits underlying narcolepsy, we produced a mouse model in which a loxP-flanked gene cassette disrupts production of the orexin receptor type 2 (OX2R; also known as HCRTR2), but normal OX2R expression can be restored by Cre recombinase. Mice lacking OX2R signaling had poor maintenance of wakefulness indicative of sleepiness and fragmented sleep and lacked any electrophysiological response to orexin-A in the wake-promoting neurons of the tuberomammillary nucleus. These defects were completely recovered by crossing them with mice that express Cre in the female germline, thus globally deleting the transcription-disrupter cassette. Then, by using an adeno-associated viral vector coding for Cre recombinase, we found that focal restoration of OX2R in neurons of the tuberomammillary nucleus and adjacent parts of the posterior hypothalamus completely rescued the sleepiness of these mice, but their fragmented sleep was unimproved. These observations demonstrate that the tuberomammillary region plays an essential role in the wake-promoting effects of orexins, but orexins must stabilize sleep through other targets.


Assuntos
Antígenos de Superfície/metabolismo , Hipotálamo/metabolismo , Narcolepsia/prevenção & controle , Narcolepsia/fisiopatologia , Receptores de Superfície Celular/metabolismo , Sono/fisiologia , Animais , Dependovirus/genética , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/patologia , Região Hipotalâmica Lateral/fisiopatologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Integrases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Camundongos , Camundongos Transgênicos , Microinjeções , Narcolepsia/patologia , Neuropeptídeos/farmacologia , Receptores de Orexina , Orexinas , Transdução de Sinais/efeitos dos fármacos , Sono/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Vigília/efeitos dos fármacos , Vigília/fisiologia
6.
Neurosci Lett ; 792: 136954, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347340

RESUMO

In mammals, daily physiological activities are regulated by a central circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Recently, an increasing number of studies have used diurnal grass rats to analyze neuronal mechanisms regulating diurnal behavior. However, spontaneous action potential firing rhythms in SCN neurons have not been demonstrated clearly in diurnal grass rats. Therefore, the present study examined extracellular single-unit recordings from SCN neurons in acute hypothalamic slices of Arvicanthis niloticus (Nile grass rats). The results of this study found that circadian firing rhythms with the highest frequency occurred at dusk (6.4 Hz at zeitgeber time (ZT)10-12), while the secondary peak occurred at dawn (5.6 Hz at ZT0-2), and the lowest frequency took place in the middle of the night (3.6 Hz at ZT14-16). Locomotor activity recordings from a separate group of animals demonstrated that the Nile grass rats of the laboratory colony used in this study displayed diurnal behaviors that coincided with large crepuscular peaks under 12:12 h light-dark cycles and bimodal rhythms under constant dim red light. Thus, a positive correlation between SCN firing frequencies and locomotor activity levels was observed in the Nile grass rats. Previously, behavioral coupling of action potential firings in SCN neurons has been suggested by in vivo recordings while the present study demonstrates that the sustenance of bimodal firing rhythms in grass rat SCN neurons can last at least one day in vitro.


Assuntos
Murinae , Núcleo Supraquiasmático , Animais , Potenciais de Ação , Núcleo Supraquiasmático/fisiologia , Fotoperíodo , Ritmo Circadiano/fisiologia
7.
Neuropsychopharmacol Rep ; 43(4): 505-512, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36905178

RESUMO

Cannabis withdrawal syndrome (CWS) in humans is characterized by various somatic symptoms, including sleep disturbances. In the present study, we investigated sleep alterations in mice after the cessation of arachidonylcyclopropylamide (ACPA), a cannabinoid type 1 receptor agonist, administration. ACPA-administered mice (ACPA mice) displayed an increased number of rearings after the cessation of ACPA administration compared to saline-administered mice (Saline mice). Moreover, the number of rubbings was also decreased in ACPA mice compared with those of the control mice. Electroencephalography (EEG) and electromyography (EMG) were measured for 3 days after the cessation of ACPA administration. During ACPA administration, there was no difference in the relative amounts of total sleep and wake time between ACPA and Saline mice. However, ACPA-induced withdrawal decreased total sleep time during the light period in ACPA mice after ACPA cessation. These results suggest that ACPA cessation induces sleep disturbances in the mouse model of CWS.


Assuntos
Cannabis , Alucinógenos , Síndrome de Abstinência a Substâncias , Humanos , Camundongos , Animais , Cannabis/efeitos adversos , Sono
8.
Curr Top Behav Neurosci ; 59: 413-425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34448132

RESUMO

Sleep-wake behavior is a well-studied physiology in central histamine studies. Classical histamine H1 receptor antagonists, such as diphenhydramine and chlorpheniramine, promote sleep in animals and humans. Further, neuronal histamine release shows a clear circadian rhythm in parallel with wake behavior. However, the early stages of histamine-associated knockout mouse studies showed relatively small defects in normal sleep-wake control. To reassess the role of histamine in behavioral state control, this review summarizes the progress in sleep-wake studies of histamine-associated genetic mouse models and discusses the significance of histamine for characteristic aspects of wake behavior. Based on analysis of recent mouse models, we propose that neuronal histamine may serve as an alert signal in the brain, when high attention or a strong wake-drive is needed, such as during exploration, self-defense, learning, or to counteract hypersomnolent diseases. Enhanced histaminergic neurotransmission may help performance or sense of signals concerning internal or environmental dangers, like peripheral histamine from mast cells in response to allergic stimuli and inflammatory signals.


Assuntos
Histamina , Vigília , Animais , Encéfalo/fisiologia , Clorfeniramina/farmacologia , Difenidramina/farmacologia , Histamina/farmacologia , Histamina/fisiologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Humanos , Camundongos , Camundongos Knockout , Sono/fisiologia , Vigília/fisiologia
9.
Nat Commun ; 13(1): 4163, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851580

RESUMO

Humans and animals lacking orexin neurons exhibit daytime sleepiness, sleep attacks, and state instability. While the circuit basis by which orexin neurons contribute to consolidated wakefulness remains unclear, existing models posit that orexin neurons provide their wake-stabilizing influence by exerting excitatory tone on other brain arousal nodes. Here we show using in vivo optogenetics, in vitro optogenetic-based circuit mapping, and single-cell transcriptomics that orexin neurons also contribute to arousal maintenance through indirect inhibition of sleep-promoting neurons of the ventrolateral preoptic nucleus. Activation of this subcortical circuit rapidly drives wakefulness from sleep by differentially modulating the activity of ventrolateral preoptic neurons. We further identify and characterize a feedforward circuit through which orexin (and co-released glutamate) acts to indirectly target and inhibit sleep-promoting ventrolateral preoptic neurons to produce arousal. This revealed circuitry provides an alternate framework for understanding how orexin neurons contribute to the maintenance of consolidated wakefulness and stabilize behavioral state.


Assuntos
Nível de Alerta , Sono , Animais , Nível de Alerta/fisiologia , Humanos , Neurônios/fisiologia , Orexinas , Sono/fisiologia , Vigília/fisiologia
10.
Nat Neurosci ; 10(9): 1131-3, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17676060

RESUMO

Fever is a result of the action of prostaglandin E2 (PGE2) on the brain and appears to require EP3 prostaglandin receptors (EP3Rs), but the specific neurons on which PGE2 acts to produce fever have not been definitively established. Here we report that selective genetic deletion of the EP3Rs in the median preoptic nucleus of mice resulted in abrogation of the fever response. These observations demonstrate that the EP3R-bearing neurons in the median preoptic nucleus are required for fever responses.


Assuntos
Febre , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Receptores de Prostaglandina E/metabolismo , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/genética , Temperatura Corporal/fisiologia , Dinoprostona/farmacologia , Febre/induzido quimicamente , Febre/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ/métodos , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Área Pré-Óptica/citologia , Receptores de Prostaglandina E/deficiência , Receptores de Prostaglandina E Subtipo EP3 , Fatores de Tempo
11.
Sleep ; 33(3): 297-306, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20337187

RESUMO

STUDY OBJECTIVES: Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states. DESIGN: We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions. MEASUREMENTS AND RESULTS: OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal. CONCLUSIONS: State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Genéticos , Narcolepsia/genética , Neuropeptídeos/genética , Fases do Sono/genética , Vigília/genética , Animais , Ritmo Circadiano/genética , Ritmo Delta , Eletroencefalografia , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orexinas , Processamento de Sinais Assistido por Computador , Transdução de Sinais/genética , Ritmo Teta
12.
Sleep ; 43(6)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31830270

RESUMO

Orexin receptor antagonists are clinically useful for treating insomnia, but thorough blockade of orexin signaling could cause narcolepsy-like symptoms. Specifically, while sleepiness is a desirable effect, an orexin antagonist could also produce cataplexy, sudden episodes of muscle weakness often triggered by strong, positive emotions. In this study, we examined the effects of dual orexin receptor antagonists (DORAs), lemborexant (E2006) and almorexant, on sleep-wake behavior and cataplexy during the dark period in wild-type (WT) mice and prepro-orexin knockout (OXKO) mice. In WT mice, lemborexant at 10 and 30 mg/kg quickly induced NREM sleep in a dose-dependent fashion. In contrast, lemborexant did not alter sleep-wake behavior in OXKO mice. Under the baseline condition, cataplexy was rare in lemborexant-treated WT mice, but when mice were given chocolate as a rewarding stimulus, lemborexant dose-dependently increased cataplexy. Almorexant produced similar results. Collectively, these results demonstrate that DORAs potently increase NREM and REM sleep in mice via blockade of orexin signaling, and higher doses can cause cataplexy when co-administered with a likely rewarding stimulus.


Assuntos
Cataplexia , Distúrbios do Início e da Manutenção do Sono , Animais , Cataplexia/tratamento farmacológico , Camundongos , Camundongos Knockout , Antagonistas dos Receptores de Orexina/farmacologia , Antagonistas dos Receptores de Orexina/uso terapêutico , Receptores de Orexina , Orexinas/farmacologia , Sono , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Vigília
13.
Sci Rep ; 10(1): 12000, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686770

RESUMO

Cholecystokinin (CCK) and leptin are satiety-controlling peptides, yet their interactive roles remain unclear. Here, we addressed this issue using in vitro and in vivo models. In rat C6 glioma cells, leptin pre-treatment enhanced Ca2+ mobilization by a CCK agonist (CCK-8s). This leptin action was reduced by Janus kinase inhibitor (AG490) or PI3-kinase inhibitor (LY294002). Meanwhile, leptin stimulation alone failed to mobilize Ca2+ even in cells overexpressing leptin receptors (C6-ObRb). Leptin increased nuclear immunoreactivity against phosphorylated STAT3 (pSTAT3) whereas CCK-8s reduced leptin-induced nuclear pSTAT3 accumulation in these cells. In the rat ventromedial hypothalamus (VMH), leptin-induced action potential firing was enhanced, whereas nuclear pSTAT3 was reduced by co-stimulation with CCK-8s. To further analyse in vivo signalling interplay, a CCK-1 antagonist (lorglumide) was intraperitoneally injected in rats following 1-h restricted feeding. Food access was increased 3-h after lorglumide injection. At this timepoint, nuclear pSTAT3 was increased whereas c-Fos was decreased in the VMH. Taken together, these results suggest that leptin and CCK receptors may both contribute to short-term satiety, and leptin could positively modulate CCK signalling. Notably, nuclear pSTAT3 levels in this experimental paradigm were negatively correlated with satiety levels, contrary to the generally described transcriptional regulation for long-term satiety via leptin receptors.


Assuntos
Colecistocinina/metabolismo , Espaço Intracelular/metabolismo , Leptina/metabolismo , Saciação/fisiologia , Transdução de Sinais , Potenciais de Ação , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Comportamento Alimentar , Masculino , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Receptores da Colecistocinina/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo
14.
J Neurosci ; 28(40): 10167-84, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18829974

RESUMO

Sleep architecture is often disturbed after a stressful event; nevertheless, little is known about the brain circuitry responsible for the sleep perturbations induced by stress. We exposed rats to a psychological stressor (cage exchange) that initially causes an acute stress response, but several hours later generates a pattern of sleep disturbances similar to that observed in stress-induced insomnia in humans: increased sleep latency, decreased non-REM (nREM) and REM sleep, increased fragmentation, and high-frequency EEG activity during nREM sleep. We examined the pattern of Fos expression to identify the brain circuitry activated, and found increased Fos in the cerebral cortex, limbic system, and parts of the arousal and autonomic systems. Surprisingly, there was simultaneous activation of the sleep-promoting areas, most likely driven by ongoing circadian and homeostatic pressure. The activity in the cerebral cortex and arousal system while sleeping generates a novel intermediate state characterized by EEG high-frequency activity, distinctive of waking, during nREM sleep. Inactivation of discrete limbic and arousal regions allowed the recovery of specific sleep components and altered the Fos pattern, suggesting a hierarchical organization of limbic areas that in turn activate the arousal system and subsequently the cerebral cortex, generating the high-frequency activity. This high-frequency activity during nREM was eliminated in the stressed rats after inactivating parts of the arousal system. These results suggest that shutting down the residual activity of the limbic-arousal system might be a better approach to treat stress-induced insomnia, rather than potentiation of the sleep system, which remains fully active.


Assuntos
Rede Nervosa/fisiologia , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Sono/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Febre/fisiopatologia , Febre/psicologia , Masculino , Ratos , Ratos Sprague-Dawley , Distúrbios do Início e da Manutenção do Sono/psicologia , Fases do Sono/fisiologia
15.
Sleep ; 32(9): 1127-34, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19750917

RESUMO

STUDY OBJECTIVES: The orexin-producing neurons are hypothesized to be essential for the circadian control of sleep/wake behavior, but it remains unknown whether these rhythms are mediated by the orexin peptides or by other signaling molecules released by these neurons such as glutamate or dynorphin. To determine the roles of these neurotransmitters, we examined the circadian rhythms of sleep/wake behavior in mice lacking the orexin neurons (ataxin-3 [Atx] mice) and mice lacking just the orexin neuropeptides (orexin knockout [KO] mice). DESIGN: We instrumented mice for recordings of sleep-wake behavior, locomotor activity (LMA), and body temperature (Tb) and recorded behavior after 6 days in constant darkness. RESULTS: The amplitude of the rapid eye movement (REM) sleep rhythm was substantially reduced in Atx mice but preserved in orexin KO mice. This blunted rhythm in Atx mice was caused by an increase in the amount of REM sleep during the subjective night (active period) due to more transitions into REM sleep and longer REM sleep episodes. In contrast, the circadian variations of Tb, LMA, Wake, non-REM sleep, and cataplexy were normal, suggesting that the circadian timekeeping system and other output pathways are intact in both Atx and KO mice. CONCLUSIONS: These results indicate that the orexin neurons are necessary for the circadian suppression of REM sleep. Blunting of the REM sleep rhythm in Atx mice but not in orexin KO mice suggests that other signaling molecules such as dynorphin or glutamate may act in concert with orexins to suppress REM sleep during the active period.


Assuntos
Ritmo Circadiano/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Neurotransmissores/fisiologia , Sono REM/fisiologia , Análise de Variância , Animais , Comportamento Animal/fisiologia , Eletroencefalografia , Eletromiografia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Masculino , Camundongos , Camundongos Transgênicos , Neuropeptídeos/deficiência , Neurotransmissores/deficiência , Orexinas , Vigília/fisiologia
17.
J Neurochem ; 105(4): 1480-98, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18331290

RESUMO

Previous studies have supported the hypothesis that macromolecular synthesis occurs in the brain during sleep as a response to prior waking activities and that prostaglandin D2 (PGD2) is an endogenous sleep substance whose effects are dependent on adenosine A2a receptor-mediated signaling. We compared gene expression in the cerebral cortex, basal forebrain, and hypothalamus during PGD2-induced and adenosinergically-induced sleep to results from our previously published study of recovery sleep (RS) after sleep deprivation (SD). Immediate early gene expression in the cortex during sleep induced by PGD2- or by the selective adenosine A2a agonist CGS21680 showed limited similarity to that observed during RS while, in the basal forebrain and hypothalamus, widespread activation of immediate early genes not seen during RS occurred. In all three brain regions, PGD2 and CGS21680 reduced the expression of arc, a transcript whose expression is elevated during SD. Using GeneChips, the majority of genes induced by either PGD2 or CGS21680 were induced by both, suggesting activation of the same pathways. However, gene expression induced in the brain after PGD2 or CGS21680 treatment was distinct from that described during RS after SD and apparently involves glial cell gene activation and signaling pathways in neural-immune interactions.


Assuntos
Adenosina/fisiologia , Química Encefálica , Regulação da Expressão Gênica/fisiologia , Prostaglandina D2/fisiologia , Sono/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina , Animais , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenetilaminas/farmacologia , Ratos , Ratos Wistar , Receptor A2A de Adenosina/fisiologia , Sono/efeitos dos fármacos , Ativação Transcricional
18.
J Neurosci Res ; 86(4): 929-36, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17929312

RESUMO

Cortical spreading depression is an excitatory wave of depolarization spreading throughout cerebral cortex at a rate of 2-5 mm/min and has been implicated in various neurological disorders, such as epilepsy, migraine aura, and trauma. Although sleepiness or sleep is often induced by these neurological disorders, the cellular and molecular mechanism has remained unclear. To investigate whether and how the sleep-wake behavior is altered by such aberrant brain activity, we induced cortical spreading depression in freely moving rats, monitoring REM and non-REM (NREM) sleep and sleep-associated changes in cyclooxygenase (COX)-2 and prostaglandins (PGs). In such a model for aberrant neuronal excitation in the cerebral cortex, the amount of NREM sleep, but not of REM sleep, increased subsequently for several hours, with an up-regulated expression of COX-2 in cortical neurons and considerable production of PGs. A specific inhibitor of COX-2 completely arrested the increase in NREM sleep. These results indicate that up-regulated neuronal COX-2 would be involved in aberrant brain excitation-induced NREM sleep via production of PGs.


Assuntos
Encéfalo/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ciclo-Oxigenase 2/biossíntese , Neurônios/metabolismo , Sono/fisiologia , Animais , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Eletroencefalografia , Eletromiografia , Expressão Gênica , Imuno-Histoquímica , Masculino , Prostaglandinas/biossíntese , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Regulação para Cima
19.
Curr Biol ; 13(14): R563-4, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12867050

RESUMO

Orexin neurons play a crucial role in regulating wakefulness and energy metabolism, but until recently, little was known about the factors that influence the activity of these essential cells. Electrophysiological studies have now identified positive and negative feedback signals that allow the orexin neurons to help maintain wakefulness.


Assuntos
Proteínas de Transporte/fisiologia , Retroalimentação Fisiológica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Neuropeptídeos/fisiologia , Vigília/fisiologia , Animais , Eletrofisiologia , Humanos , Modelos Biológicos , Orexinas
20.
Sleep ; 30(11): 1417-25, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18041476

RESUMO

STUDY OBJECTIVE: People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. DESIGN: We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. MEASUREMENTS AND RESULTS: Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. CONCLUSIONS: Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy.


Assuntos
Cataplexia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Corrida , Vigília/fisiologia , Afeto , Animais , Eletroencefalografia , Eletromiografia , Locomoção , Masculino , Camundongos , Camundongos Knockout , Motivação , Atividade Motora , Obesidade/metabolismo , Orexinas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa