Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Mol Cell ; 82(21): 4001-4017.e7, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265488

RESUMO

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.


Assuntos
RNA Longo não Codificante , Homeostase do Telômero , Cromatina/genética , Proteômica , Telômero/genética , Telômero/metabolismo , RNA Longo não Codificante/genética , Homeostase
2.
Mol Cell ; 81(5): 1074-1083.e5, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453169

RESUMO

The RAD51 recombinase forms nucleoprotein filaments to promote double-strand break repair, replication fork reversal, and fork stabilization. The stability of these filaments is highly regulated, as both too little and too much RAD51 activity can cause genome instability. RADX is a single-strand DNA (ssDNA) binding protein that regulates DNA replication. Here, we define its mechanism of action. We find that RADX inhibits RAD51 strand exchange and D-loop formation activities. RADX directly and selectively interacts with ATP-bound RAD51, stimulates ATP hydrolysis, and destabilizes RAD51 nucleofilaments. The RADX interaction with RAD51, in addition to its ssDNA binding capability, is required to maintain replication fork elongation rates and fork stability. Furthermore, BRCA2 can overcome the RADX-dependent RAD51 inhibition. Thus, RADX functions in opposition to BRCA2 in regulating RAD51 nucleofilament stability to ensure the right level of RAD51 function during DNA replication.


Assuntos
Proteína BRCA2/genética , Replicação do DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética , Rad51 Recombinase/genética , Trifosfato de Adenosina/metabolismo , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hidrólise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Ligação a RNA/metabolismo , Rad51 Recombinase/metabolismo , Transdução de Sinais , Imagem Individual de Molécula , Proteína Vermelha Fluorescente
3.
Mol Cell ; 81(20): 4243-4257.e6, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34473946

RESUMO

Mammalian cells use diverse pathways to prevent deleterious consequences during DNA replication, yet the mechanism by which cells survey individual replisomes to detect spontaneous replication impediments at the basal level, and their accumulation during replication stress, remain undefined. Here, we used single-molecule localization microscopy coupled with high-order-correlation image-mining algorithms to quantify the composition of individual replisomes in single cells during unperturbed replication and under replicative stress. We identified a basal-level activity of ATR that monitors and regulates the amounts of RPA at forks during normal replication. Replication-stress amplifies the basal activity through the increased volume of ATR-RPA interaction and diffusion-driven enrichment of ATR at forks. This localized crowding of ATR enhances its collision probability, stimulating the activation of its replication-stress response. Finally, we provide a computational model describing how the basal activity of ATR is amplified to produce its canonical replication stress response.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA , DNA de Neoplasias/biossíntese , Algoritmos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , DNA de Neoplasias/genética , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Mutação , Fosforilação , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Imagem Individual de Molécula
4.
Mol Cell ; 76(1): 11-26.e7, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31400850

RESUMO

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in aggressive cancers. We show that the disruption of RAD51-associated protein 1 (RAD51AP1) in ALT+ cancer cells leads to generational telomere shortening. This is due to RAD51AP1's involvement in RAD51-dependent homologous recombination (HR) and RAD52-POLD3-dependent break induced DNA synthesis. RAD51AP1 KO ALT+ cells exhibit telomere dysfunction and cytosolic telomeric DNA fragments that are sensed by cGAS. Intriguingly, they activate ULK1-ATG7-dependent autophagy as a survival mechanism to mitigate DNA damage and apoptosis. Importantly, RAD51AP1 protein levels are elevated in ALT+ cells due to MMS21 associated SUMOylation. Mutation of a single SUMO-targeted lysine residue perturbs telomere dynamics. These findings indicate that RAD51AP1 is an essential mediator of the ALT mechanism and is co-opted by post-translational mechanisms to maintain telomere length and ensure proliferation of ALT+ cancer cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proliferação de Células , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligases/genética , Ligases/metabolismo , Lisina , Neoplasias/genética , Neoplasias/patologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Estabilidade Proteica , Proteínas de Ligação a RNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Transdução de Sinais , Sumoilação , Telômero/genética , Telômero/patologia
5.
Proc Natl Acad Sci U S A ; 119(23): e2116462119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658074

RESUMO

Helicases are multifunctional motor proteins with the primary task of separating nucleic acid duplexes. These enzymes often exist in distinct oligomeric forms and play essential roles during nucleic acid metabolism. Whether there is a correlation between their oligomeric state and cellular function, and how helicases effectively perform functional switching remains enigmatic. Here, we address these questions using a combined single-molecule approach and Bloom syndrome helicase (BLM). By examining the head-on collision of two BLM-mediated DNA unwinding forks, we find that two groups of BLM, upon fork convergence, promptly oligomerize across the fork junctions and tightly bridge two independent single-stranded (ss) DNA molecules that were newly generated by the unwinding BLMs. This protein oligomerization is mediated by the helicase and RNase D C-terminal (HRDC) domain of BLM and can sustain a disruptive force of up to 300 pN. Strikingly, onsite BLM oligomerization gives rise to an immediate transition of their helicase activities, from unwinding dsDNA to translocating along ssDNA at exceedingly fast rates, thus allowing for the efficient displacement of ssDNA-binding proteins, such as RPA and RAD51. These findings uncover an activity transition pathway for helicases and help to explain how BLM plays both pro- and anti-recombination roles in the maintenance of genome stability.


Assuntos
DNA de Cadeia Simples , RecQ Helicases , DNA/metabolismo , DNA de Cadeia Simples/genética , Recombinação Homóloga , Microscopia Confocal , Pinças Ópticas , RecQ Helicases/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(38): e2202727119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099300

RESUMO

Mutations in homologous recombination (HR) genes, including BRCA1, BRCA2, and the RAD51 paralog RAD51C, predispose to tumorigenesis and sensitize cancers to DNA-damaging agents and poly(ADP ribose) polymerase inhibitors. However, ∼800 missense variants of unknown significance have been identified for RAD51C alone, impairing cancer risk assessment and therapeutic strategies. Here, we interrogated >50 RAD51C missense variants, finding that mutations in residues conserved with RAD51 strongly predicted HR deficiency and disrupted interactions with other RAD51 paralogs. A cluster of mutations was identified in and around the Walker A box that led to impairments in HR, interactions with three other RAD51 paralogs, binding to single-stranded DNA, and ATP hydrolysis. We generated structural models of the two RAD51 paralog complexes containing RAD51C, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3. Together with our functional and biochemical analyses, the structural models predict ATP binding at the interface of RAD51C interactions with other RAD51 paralogs, similar to interactions between monomers in RAD51 filaments, and explain the failure of RAD51C variants in binding multiple paralogs. Ovarian cancer patients with variants in this cluster showed exceptionally long survival, which may be relevant to the reversion potential of the variants. This comprehensive analysis provides a framework for RAD51C variant classification. Importantly, it also provides insight into the functioning of the RAD51 paralog complexes.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Neoplasias Ovarianas , Rad51 Recombinase , Proteínas Supressoras de Tumor , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Mutação , Neoplasias Ovarianas/genética , Rad51 Recombinase/genética , Proteínas Supressoras de Tumor/genética
7.
Nucleic Acids Res ; 50(19): 11058-11071, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36263813

RESUMO

DNA double strand breaks (DSBs) are induced by external genotoxic agents (ionizing radiation or genotoxins) or by internal processes (recombination intermediates in lymphocytes or by replication errors). The DNA ends induced by these genotoxic processes are often not ligatable, requiring potentially mutagenic end-processing to render ends compatible for ligation by non-homologous end-joining (NHEJ). Using single molecule approaches, Loparo et al. propose that NHEJ fidelity can be maintained by restricting end-processing to a ligation competent short-range NHEJ complex that 'maximizes the fidelity of DNA repair'. These in vitro studies show that although this short-range NHEJ complex requires DNA ligase IV (Lig4), its catalytic activity is dispensable. Here using cellular models, we show that inactive Lig4 robustly promotes DNA repair in living cells. Compared to repair products from wild-type cells, those isolated from cells with inactive Lig4 show a somewhat increased fraction that utilize micro-homology (MH) at the joining site consistent with alternative end-joining (a-EJ). But unlike a-EJ in the absence of NHEJ, a large percentage of joints isolated from cells with inactive Lig4 occur with no MH - thus, clearly distinct from a-EJ. Finally, biochemical assays demonstrate that the inactive Lig4 complex promotes the activity of DNA ligase III (Lig3).


Assuntos
Reparo do DNA por Junção de Extremidades , Reparo do DNA , DNA/genética , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP/genética , DNA Ligases/genética , DNA Ligases/metabolismo , Biocatálise
9.
Nucleic Acids Res ; 49(5): 2629-2641, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33590005

RESUMO

We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Reparo do DNA por Junção de Extremidades , Autoantígeno Ku/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/química , DNA/metabolismo , DNA Ligases/metabolismo , Autoantígeno Ku/química , Multimerização Proteica
10.
EMBO J ; 37(7)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29507080

RESUMO

An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/fisiologia , Rad51 Recombinase/metabolismo , Trifosfato de Adenosina/química , Cristalografia por Raios X , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA de Cadeia Simples/química , Modelos Moleculares , Conformação Molecular , Nucleoproteínas/metabolismo , Rad51 Recombinase/química
11.
Nature ; 535(7613): 566-9, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27437582

RESUMO

Non-homologous end joining (NHEJ) is the primary pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells. Such breaks are formed, for example, during gene-segment rearrangements in the adaptive immune system or by cancer therapeutic agents. Although the core components of the NHEJ machinery are known, it has remained difficult to assess the specific roles of these components and the dynamics of bringing and holding the fragments of broken DNA together. The structurally similar XRCC4 and XLF proteins are proposed to assemble as highly dynamic filaments at (or near) DSBs. Here we show, using dual- and quadruple-trap optical tweezers combined with fluorescence microscopy, how human XRCC4, XLF and XRCC4-XLF complexes interact with DNA in real time. We find that XLF stimulates the binding of XRCC4 to DNA, forming heteromeric complexes that diffuse swiftly along the DNA. Moreover, we find that XRCC4-XLF complexes robustly bridge two independent DNA molecules and that these bridges are able to slide along the DNA. These observations suggest that XRCC4-XLF complexes form mobile sleeve-like structures around DNA that can reconnect the broken ends very rapidly and hold them together. Understanding the dynamics and regulation of this mechanism will lead to clarification of how NHEJ proteins are involved in generating chromosomal translocations.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Difusão , Humanos , Microscopia de Fluorescência , Movimento , Pinças Ópticas , Translocação Genética
13.
PLoS Genet ; 15(10): e1008355, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584931

RESUMO

Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Rad51 Recombinase/genética , Núcleo Celular/genética , Cromátides/genética , Dano ao DNA/genética , Genoma Humano/genética , Células HEK293 , Humanos , Mutação
14.
Angew Chem Int Ed Engl ; 61(39): e202209463, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35922882

RESUMO

Bloom syndrome protein (BLM) is a conserved RecQ family helicase involved in the maintenance of genome stability. BLM has been widely recognized as a genome "caretaker" that processes structured DNA. In contrast, our knowledge of how BLM behaves on single-stranded (ss) DNA is still limited. Here, we demonstrate that BLM possesses the intrinsic ability for phase separation and can co-phase separate with ssDNA to form dynamically arrested protein/ssDNA co-condensates. The introduction of ATP potentiates the capability of BLM to condense on ssDNA, which further promotes the compression of ssDNA against a resistive force of up to 60 piconewtons. Moreover, BLM is also capable of condensing replication protein A (RPA)- or RAD51-coated ssDNA, before which it generates naked ssDNA by dismantling these ssDNA-binding proteins. Overall, our findings identify an unexpected characteristic of a DNA helicase and provide a new angle of protein/ssDNA co-condensation for understanding the genomic instability caused by BLM overexpression under diseased conditions.


Assuntos
Síndrome de Bloom , RecQ Helicases/metabolismo , Trifosfato de Adenosina/metabolismo , Síndrome de Bloom/genética , DNA , Reparo do DNA , DNA de Cadeia Simples , Instabilidade Genômica , Humanos , RecQ Helicases/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo
16.
Mol Cell ; 36(4): 539-40, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19941814

RESUMO

In this issue of Molecular Cell, Mazloum and Holloman (2009b) propose that 5' end strand invasion promoted by collaboration between Rad51 and Brh2 could be used for bypassing lesions during DNA replication, potentially advancing understanding of BRCA2 tumor suppressor function.


Assuntos
Proteína BRCA2/metabolismo , DNA Fúngico/metabolismo , Proteínas Fúngicas/metabolismo , Homologia de Sequência de Aminoácidos , Ustilago/genética , Proteína BRCA2/química , DNA Fúngico/química , Proteínas Fúngicas/química , Modelos Biológicos , Rad51 Recombinase/metabolismo , Recombinação Genética
17.
Proc Natl Acad Sci U S A ; 111(42): 15090-5, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288749

RESUMO

During recombinational repair of double-stranded DNA breaks, RAD51 recombinase assembles as a nucleoprotein filament around single-stranded DNA to form a catalytically proficient structure able to promote homology recognition and strand exchange. Mediators and accessory factors guide the action and control the dynamics of RAD51 filaments. Elucidation of these control mechanisms necessitates development of approaches to quantitatively probe transient aspects of RAD51 filament dynamics. Here, we combine fluorescence microscopy, optical tweezers, and microfluidics to visualize the assembly of RAD51 filaments on bare single-stranded DNA and quantify the process with single-monomer sensitivity. We show that filaments are seeded from RAD51 nuclei that are heterogeneous in size. This heterogeneity appears to arise from the energetic balance between RAD51 self-assembly in solution and the size-dependent interaction time of the nuclei with DNA. We show that nucleation intrinsically is substrate selective, strongly favoring filament formation on bare single-stranded DNA. Furthermore, we devised a single-molecule fluorescence recovery after photobleaching assay to independently observe filament nucleation and growth, permitting direct measurement of their contributions to filament formation. Our findings yield a comprehensive, quantitative understanding of RAD51 filament formation on bare single-stranded DNA that will serve as a basis to elucidate how mediators help RAD51 filament assembly and accessory factors control filament dynamics.


Assuntos
DNA de Cadeia Simples/química , Rad51 Recombinase/química , Núcleo Celular/metabolismo , Corantes Fluorescentes/química , Humanos , Funções Verossimilhança , Microfluídica , Microscopia de Fluorescência , Pinças Ópticas , RNA Interferente Pequeno/metabolismo , Recombinação Genética , Reprodutibilidade dos Testes , Processos Estocásticos , Especificidade por Substrato
18.
Langmuir ; 32(33): 8403-12, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27479732

RESUMO

RAD51 is the key component of the homologous recombination pathway in eukaryotic cells and performs its task by forming filaments on DNA. In this study we investigate the physical properties of RAD51 filaments formed on DNA using nanofluidic channels and fluorescence microscopy. Contrary to the bacterial ortholog RecA, RAD51 forms inhomogeneous filaments on long DNA in vitro, consisting of several protein patches. We demonstrate that a permanent "kink" in the filament is formed where two patches meet if the stretch of naked DNA between the patches is short. The kinks are readily seen in the present microscopy approach but would be hard to identify using conventional single DNA molecule techniques where the DNA is more stretched. We also demonstrate that protein patches separated by longer stretches of bare DNA roll up on each other and this is visualized as transiently overlapping filaments. RAD51 filaments can be formed at several different conditions, varying the cation (Mg(2+) or Ca(2+)), the DNA substrate (single-stranded or double-stranded), and the RAD51 concentration during filament nucleation, and we compare the properties of the different filaments formed. The results provide important information regarding the physical properties of RAD51 filaments but also demonstrate that nanofluidic channels are perfectly suited to study protein-DNA complexes.

19.
Mol Cell ; 30(4): 530-8, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18498754

RESUMO

Homologous recombination, the exchange of strands between different DNA molecules, is essential for proper maintenance and accurate duplication of the genome. Using magnetic tweezers, we monitor RecA-driven homologous recombination of individual DNA molecules in real time. We resolve several key aspects of DNA structure during and after strand exchange. Changes in DNA length and twist yield helical parameters for the protein-bound three-stranded structure in conditions in which ATP was not hydrolyzed. When strand exchange was completed under ATP hydrolysis conditions that allow protein dissociation, a "D wrap" structure formed. During homologous recombination, strand invasion at one end and RecA dissociation at the other end occurred at the same rate, and our single-molecule analysis indicated that a region of only about 80 bp is actively involved in the synapsis at any time during the entire reaction involving a long ( approximately 1 kb) region of homology.


Assuntos
DNA/metabolismo , Magnetismo , Recombinases Rec A/metabolismo , Recombinação Genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , DNA/química , DNA/genética , Dano ao DNA , Conformação de Ácido Nucleico , Recombinases Rec A/genética
20.
Proc Natl Acad Sci U S A ; 110(10): 3859-64, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431161

RESUMO

Mechanical stress plays a key role in many genomic processes, such as DNA replication and transcription. The ability to predict the response of double-stranded (ds) DNA to tension is a cornerstone of understanding DNA mechanics. It is widely appreciated that torsionally relaxed dsDNA exhibits a structural transition at forces of ∼65 pN, known as overstretching, whereby the contour length of the molecule increases by ∼70%. Despite extensive investigation, the structural changes occurring in DNA during overstretching are still generating considerable debate. Three mechanisms have been proposed to account for the increase in DNA contour length during overstretching: strand unpeeling, localized base-pair breaking (yielding melting bubbles), and formation of S-DNA (strand unwinding, while base pairing is maintained). Here we show, using a combination of fluorescence microscopy and optical tweezers, that all three structures can exist, uniting the often contradictory dogmas of DNA overstretching. We visualize and distinguish strand unpeeling and melting-bubble formation using an appropriate combination of fluorescently labeled proteins, whereas remaining B-form DNA is accounted for by using specific fluorescent molecular markers. Regions of S-DNA are associated with domains where fluorescent probes do not bind. We demonstrate that the balance between the three structures of overstretched DNA is governed by both DNA topology and local DNA stability. These findings enhance our knowledge of DNA mechanics and stability, which are of fundamental importance to understanding how proteins modify the physical state of DNA.


Assuntos
DNA de Cadeia Simples/química , Sequência Rica em At , Pareamento de Bases , Ligação Competitiva , Fenômenos Biofísicos , DNA/química , DNA/metabolismo , Quebras de DNA , DNA de Cadeia Simples/metabolismo , Humanos , Microscopia de Fluorescência , Modelos Moleculares , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Pinças Ópticas , Concentração Osmolar , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Replicação A/metabolismo , Estresse Mecânico , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa