Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(14): 3096-3103, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37017103

RESUMO

Sequential quantum mechanics/molecular mechanics (QM/MM) calculations combining the average solvent electrostatic configuration (ASEC) and the free energy gradient method are employed to locate minimum structures of α- and ß-alanine in a water environment. Herein, we study the solvation effects in the nuclear magnetic resonance (NMR) spectroscopy, vibrational circular dichroism (VCD) spectroscopy, and electronic circular dichroism (ECD) spectroscopy of dl-α-alanine and ß-alanine molecules. Our results point out that the ASEC-FEG (average solvent electrostatic configuration with the free energy gradient) method is a suitable approach for finding equilibrium structures of the alanine molecules in aqueous solution. Its accuracy is checked by comparing the optimized structures with those reached by the polarizable continuum model (PCM) and via experimental data. NMR parameters and vibrational and electronic UV-vis spectra are computed with a remarkable agreement with their corresponding experimental values.

2.
J Phys Chem A ; 127(3): 619-626, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36648308

RESUMO

Within the framework of Density Functional Theory (DFT), the relevance of the term Hartree-Fock exchange (HFE) for a variety of molecular properties is a critical point. For this reason, we spend efforts to understand these relationships in nuclear magnetic resonance (NMR) parameters in a water solvent. This work takes advantage of the appropriate aug-cc-pVTZ-J basis set and the Minnesota family of DFT methods, which consider different portions of HFE contributions. With regard to solvent participation, the results are based on a sequential Monte Carlo/Quantum Mechanics procedure, which builds the structures of the liquid under realistic thermodynamic conditions. Compared to the accurate results of second-order polarization propagator approximation (SOPPA) and experimental data, all NMR parameters show a huge dependence on the size of the HFE contribution. For instance, the inclusion of this term in 1JOH and 2JHH indirect spin-spin couplings does vary with 49.661 and 25.459 Hz, respectively. The M06-HF method accounts for 100% of HFE and better matches the σO and σH shielding constants. On the other hand, 1JOH and 2JHH demand a medium contribution (54% of HFE), the best description being associated with the M06-2X method. Thus, the dependence varies regarding the phenomenology of the property in focus and the order for independent treatments. For elements that participate in hydrogen bonds simultaneously as donor and acceptor actors, the results indicate that explicit solvent molecules must be considered in the quantum mechanical calculations for better modeling of paramagnetic shielding constants.

3.
J Chem Phys ; 149(18): 184905, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441933

RESUMO

The electron donor poly-thienothiophene-benzodithiophene (PTB) polymer series displays remarkable properties that lead to more efficient bulk heterojunction (BHJ) organic solar cells. In this work, the ground and four excited states (bright S 1 and dark S 2-S 4) of three different members of the PTBn (n = 1, 6, 7) series were studied and compared with the prototypical poly(3-hexylthiophene) (P3HT) donor polymer. Time-dependent density functional theory was employed to investigate oligomers of similar sizes (∼50 Å). Charge alternation electron accumulation and depletion regions of the four transitions are concentrated on the inner units, thereby favoring interaction with the electron acceptor in a BHJ. The bright S 1 transition energies of PTBn are about 0.2 eV lower as compared to P3HT, thereby allowing a better match of their levels with the typical C60-type acceptor moiety in a BHJ. Side chains play a minor role in the electronic spectrum (less than ∼0.1 eV). The most efficient PTB7 transfers more electronic charge from its electron-rich benzodithiophene subunit to its electron-deficient thieno[3,4-b] thiophene subunit as compared to PTB1 and PTB6. We show that the dipolar effect, a partial concentration of negative and positive charges on the different parts of the donor polymer that favors charge separation, is more pronounced in PTBn polymers and typically an order of magnitude larger as compared to P3HT. These effects are conspicuous for the most efficient polymer of the series, PTB7, with its fluorine substituent shown to play a crucial role.

4.
J Comput Chem ; 36(30): 2260-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26454252

RESUMO

The first three valence transitions of the two nitromethane conformers (CH3NO2) are two dark n → π* transitions and a very intense π → π* transition. In this work, these transitions in gas-phase and solvated in water of both conformers were investigated theoretically. The polarizable continuum model (PCM), two conductor-like screening (COSMO) models, and the discrete sequential quantum mechanics/molecular mechanics (S-QM/MM) method were used to describe the solvation effect on the electronic spectra. Time dependent density functional theory (TDDFT), configuration interaction including all single substitutions and perturbed double excitations (CIS(D)), the symmetry-adapted-cluster CI (SAC-CI), the multistate complete active space second order perturbation theory (CASPT2), and the algebraic-diagrammatic construction (ADC(2)) electronic structure methods were used. Gas-phase CASPT2, SAC-CI, and ADC(2) results are in very good agreement with published experimental and theoretical spectra. Among the continuum models, PCM combined either with CASPT2, SAC-CI, or B3LYP provided good agreement with available experimental data. COSMO combined with ADC(2) described the overall trends of the transition energy shifts. The effect of increasing the number of explicit water molecules in the S-QM/MM approach was discussed and the formation of hydrogen bonds was clearly established. By including explicitly 24 water molecules corresponding to the complete first solvation shell in the S-QM/MM approach, the ADC(2) method gives more accurate results as compared to the TDDFT approach and with similar computational demands. The ADC(2) with S-QM/MM model is, therefore, the best compromise for accurate solvent calculations in a polar environment.

5.
J Mol Model ; 28(4): 85, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377023

RESUMO

An experimental and theoretical study based on DFT/TD-DFT approximations is presented to understand the nature of electronic excitations, reactivity, and nonlinear optical (NLO) properties of reactive orange 16 dye (RO16), an azo chromophore widely used in textile and pharmacological industries. The results show that the solvent has a considerable influence on the electronic properties of the material. According to experimental results, the absorption spectrum is formed by four intense transitions, which have been identified as [Formula: see text] states using TD-DFT calculations. However, the TD-DFT results reveal a weak [Formula: see text] in the low-lying spectral region. Continuum models of solvation indicate that these states suffer from bathochromic (ca. 15 nm) and hypsochromic shifts (ca. 4 nm), respectively. However, the expected blue shift for the absorption [Formula: see text] is only described using long-range or dispersion-corrected DFT methods. RO16 is classified as a strong electrophilic system, with electrophilicity ω > 1.5 eV. Concerning the nucleophilicity parameter (N), from vacuum to solvent, the environment is active and changes the nucleophilic status from strong to moderate nucleophile (2.0 ≤ N ≤ 3.0 eV). The results also suggest that all electrical constants are strongly dependent on long-range and Hartree-Fock exchange contributions, and the absence of these interactions gives results far from reality. In particular, the results for the NLO response show that the chromophore presents a potential application in this field with a low refractive index and first hyperpolarizability ca. 214 times bigger than the value usually reported for urea (ß = 0.34 × 10- 30 esu), which is a standard NLO material. Concerning the solvent effects, the results indicate that the polarizability increases [Formula: see text] esu from gas to solvent while the first hyperpolarizability is calculated as [Formula: see text] esu, ca. 180%, regarding the vacuum. The results suggest RO16 is a potential compound in NLO applications. Graphical Abstract The frontier molecular orbitals, and the inverse relation between the energy-gap (Egap) and the first hyperpolarizability (ß).

6.
J Mass Spectrom ; 56(9): e4779, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34407561

RESUMO

Novichok is one of the most feared and controversial nerve agents, which existence was confirmed only after the Salisbury attack in 2018. A new attack on August 2020, in Russia, was confirmed. After the 2018 attack, the agent was included in the list of the most dangerous chemicals of the Chemical Weapons Convention (CWC). However, information related to its electron ionization mass spectrometry (EI/MS), essential for unambiguous identification, is scarce. Therefore, investigations about Novichok EI/MS are urgent. In this work, we employed Born-Oppenheimer molecular dynamics through the Quantum Chemistry Electron Ionization Mass Spectrometry (QCEIMS) method to simulate and rationalize the EI/MS spectra and fragmentation pathways of 32 Novichok molecules recently incorporated into the CWC. The comparison of additional simulations with the measured EI spectrum of another Novichok analog is very favorable. A general scheme of the fragmentation pathways derived from simulation results was presented. The present results will be useful for elucidation and prediction of the EI spectra and fragmentation pathways of the dangerous Novichok nerve agent.


Assuntos
Agentes Neurotóxicos , Organofosfatos , Elétrons , Espectrometria de Massas , Agentes Neurotóxicos/química , Organofosfatos/química
7.
J Mass Spectrom ; 55(6): e4513, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32212286

RESUMO

Tabun (ethyl N,N-dimethylphosphoramidocyanidate), or GA, is a chemical warfare nerve agent produced during the World War II. The synthesis of its analogs is rather simple; thus, it is a significant threat. Furthermore, experiments with tabun and other nerve agents are greatly limited by the involved life risks and the severe restrictions imposed by the Chemical Weapons Convention. For these reasons, accurate theoretical assignment of fragmentation pathways can be especially important. In this work, we employ the Quantum Chemistry Electron Ionization Mass Spectra method, which combines molecular dynamics, quantum chemistry methods, and stochastic approaches, to accurately investigate the electron ionization/mass spectrometry (EI/MS) fragmentation spectrum and pathways of the tabun molecule. We found that different rearrangement reactions occur including a McLafferty involving the nitrile group. An essential and characteristic pathway for identification of tabun and analogs, a two-step fragmentation producing the m/z 70 ion, was confirmed. The present results will be also useful to predict EI/MS spectrum and fragmentation pathways of other members of the tabun family, namely, the O-alkyl/cycloalkyl N,N-dialkyl (methyl, ethyl, isopropyl, or propyl) phosphoramidocyanidates.

8.
Artigo em Inglês | MEDLINE | ID: mdl-29734107

RESUMO

The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule is a prototypical system displaying twisted intramolecular (TICT) charge transfer effects. The ground and the first four electronic excited states (S1-S4) in gas phase and upon solvation were studied. Charge transfer values as function of the torsion angle between the donor group (dimethylamine) and the acceptor moiety (benzonitrile) were explicitly computed. Potential energy curves were also obtained. The algebraic diagrammatic construction method at the second-order [ADC(2)] ab initio wave function was employed. Three solvents of increased polarities (benzene, DMSO and water) were investigated using discrete (average solvent electrostatic configuration - ASEC) and continuum (conductor-like screening model - COSMO) models. The results for the S3 and S4 excited states and the S1-S4 charge transfer curves were not previously available in the literature. Electronic gas phase and solvent vertical spectra are in good agreement with previous theoretical and experimental results. In the twisted (90°) geometry the optical oscillator strengths have negligible values even for the S2 bright state. Potential energy curves show two distinct pairs of curves intersecting at decreasing angles or not crossing in the more polar solvents. Charge transfer and electric dipole values allowed the rationalization of these results. The former effects are mostly independent of the solvent model and polarity. Although COSMO and ASEC solvent models mostly lead to similar results, there is an important difference: some crossings of the excitation energy curves appear only in the ASEC solvation model, which has important implications to the photochemistry of DMABN.

9.
J Mol Model ; 24(6): 128, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728781

RESUMO

Single-sheet nanoclusters of MoS2, NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS2 in the following order: CoMoS > NiMoS > MoS2. The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

10.
J Mass Spectrom ; 53(10): 934-941, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29935494

RESUMO

Pyrrolizidine alkaloids are natural molecules playing important roles in different biochemical processes in nature and in humans. In this work, the electron ionization mass spectrum of retronecine, an alkaloid molecule found in plants, was investigated computationally. Its mass spectrum can be characterized by three main fragment ions having the following m/z ratios: 111, 94, and 80. In order to rationalize the mass spectrum, minima and transition state geometries were computed using density functional theory. It was showed that the dissociation process includes an aromatization of the originally five-membered ring of retronecine converted into a six-membered ring compound. A fragmentation pathway mechanism involving dissociation activation barriers that are easily overcome by the initial ionization energy was found. From the computed quantum chemical geometric, atomic charges, and energetic parameters, the abundance of each ion in the mass spectrum of retronecine was discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa