RESUMO
Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.
Assuntos
Bacillus subtilis , Fósforo , Raízes de Plantas , Solo , Solanum lycopersicum , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Solo/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/metabolismo , Microbiologia do Solo , Solubilidade , Ácidos Indolacéticos/metabolismo , FertilizantesRESUMO
Plant growth-promoting microbes (PGPM) can enhance crop yield and health, but knowledge of their mode-of-action is limited. We studied the influence of two Bacillus subtilis strains, the natural isolate ALC_02 and the domesticated 168 Gö, on Arabidopsis and hypothesized that they modify the root architecture by modulating hormone transport or signaling. Both bacteria promoted increase of shoot and root surface area in vitro, but through different root anatomical traits. Mutant plants deficient in auxin transport or signaling responded less to the bacterial strains than the wild-type, and application of the auxin transport inhibitor NPA strongly reduced the influence of the strains. Both bacteria produced auxin and enhanced shoot auxin levels in DR5::GUS reporter plants. Accordingly, most of the beneficial effects of the strains were dependent on functional auxin transport and signaling, while only 168 Gö depended on functional ethylene signaling. As expected, only ALC_02 stimulated plant growth in soil, unlike 168 Gö that was previously reported to have reduced biofilms. Collectively, the results highlight that B. subtilis strains can have strikingly different plant growth-promoting properties, dependent on what experimental setup they are tested in, and the importance of choosing the right PGPM for a desired root phenotype.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Bacillus subtilis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Root-knot nematodes (RKNs, Meloidogyne spp.) are obligate plant parasites that constitute a significant pest for agriculture worldwide. They penetrate the plant roots, reducing the uptake of water and nutrients, causing a significant impact on crop yield. One alternative on focus now for nematode management is biological control. Rhizobacteria within the Bacillus genus show multiple modes of action against plant-parasitic nematodes (PPNs) that can act alone or in combination. In this context, we evaluated a dual-strain bacteria combination (B. paralicheniformi FMCH001 and B. subtilis FMCH002) to reduce nematode infection in tomato plants. We evaluated mortality of larvae from Meloidogyne javanica in vitro, as well as eggs hatching after the treatment. Atraction, penetration, establishment, and reproduction assays in vitro or in pots in tomato plants infected with M. javanica and treated/ untreated with the dual-strain bacteria combination were also performed. Additionally, morphometric parameters comparing giant cells size from galls of treated and untreated plants by using confocal microscopy were also measured. The results showed that this combination of strains has nematicidal properties in the pre-infection phase by decreasing the egg-hatching, juvenile survival, and attractiveness to the roots. Furthermore, nematode establishment, gall formation, and, remarkably, giant cell development was severely impaired after the bacterial treatment, suggesting interference with morphogenetic mechanisms induced by the nematode during GCs development within the plant. Nematode reproduction in tomato plants was reduced independently of the application mode in soil, before or after bacterial treatment. The dual-strain combination was also effective against other PPNs (i.e. Pratylenchus spp.) and in different crops (soybean). Therefore, combining B. paralicheniformis FMCH001 and B. subtilis FMCH002 is an efficient agent for the biological control of Meloidogyne spp. by interfering with different stages of the nematode cycle as a result of multiple modes of action.
RESUMO
Increasing agricultural losses due to biotic and abiotic stresses caused by climate change challenge food security worldwide. A promising strategy to sustain crop productivity under conditions of limited water availability is the use of plant growth promoting rhizobacteria (PGPR). Here, the effects of spore forming Bacillus licheniformis (FMCH001) on growth and physiology of maize (Zea mays L. cv. Ronaldinho) under well-watered and drought stressed conditions were investigated. Pot experiments were conducted in the automated high-throughput phenotyping platform PhenoLab and under greenhouse conditions. Results of the PhenoLab experiments showed that plants inoculated with B. licheniformis FMCH001 exhibited increased root dry weight (DW) and plant water use efficiency (WUE) compared to uninoculated plants. In greenhouse experiments, root and shoot DW significantly increased by more than 15% in inoculated plants compared to uninoculated control plants. Also, the WUE increased in FMCH001 plants up to 46% in both well-watered and drought stressed plants. Root and shoot activities of 11 carbohydrate and eight antioxidative enzymes were characterized in response to FMCH001 treatments. This showed a higher antioxidant activity of catalase (CAT) in roots of FMCH001 treated plants compared to uninoculated plants. The higher CAT activity was observed irrespective of the water regime. These findings show that seed coating with Gram positive spore forming B. licheniformis could be used as biostimulants for enhancing plant WUE under both normal and drought stress conditions.
RESUMO
BACKGROUND & AIMS: Preterm birth and formula feeding are key risk factors associated with necrotizing enterocolitis (NEC) in infants, but little is known about intestinal conditions that predispose to disease. Thus, structural, functional, and microbiologic indices were used to investigate the etiology of spontaneous NEC development in preterm pigs. METHODS: Piglets were delivered by cesarean section at 92% gestation, reared in infant incubators, and fed infant formula or colostrum every 3 hours (n = 120) until tissue collection at 1-2 days of age. RESULTS: Clinical and histopathologic signs of NEC were observed in 57% of pigs fed FORMULA (26/46) and in 5% of pigs fed COLOSTRUM (2/38) (P < .05). Relative to COLOSTRUM, both healthy and sick FORMULA pigs had reduced intestinal villous heights, enzyme activities, nutrient absorption, and antioxidant levels and higher inducible nitric oxide synthetase activity (P < .05). In healthy pigs, mucosal microbial diversity remained low and diet independent. NEC pigs showed bacterial overgrowth, and a high mucosal density of Clostridium perfringens was detected in some but not all pigs. Germ-free conditions and antiserum against Clostridium perfringens toxin prevented intestinal dysfunction and NEC in formula-fed pigs, whereas the gut trophic factors, epidermal growth factor, and glucagon-like peptide 2 had limited effects. CONCLUSIONS: A subclinical, formula-induced mucosal atrophy and dysfunction predispose to NEC and bacterial overgrowth. The adverse feeding effects are colonization dependent and may be reduced by factors in colostrum that include antibodies against aggressive toxins such as those of Clostridium perfringens.