Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Ecol ; 33(9): e17331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38533629

RESUMO

Marine sediments cover 70% of the Earth's surface, and harbour diverse bacterial communities critical for marine biogeochemical processes, which affect climate change, biodiversity and ecosystem functioning. Nematodes, the most abundant and species-rich metazoan organisms in marine sediments, in turn, affect benthic bacterial communities and bacterial-mediated ecological processes, but the underlying mechanisms by which they affect biogeochemical cycles remain poorly understood. Here, we demonstrate using a metatranscriptomic approach that nematodes alter the taxonomic and functional profiles of benthic bacterial communities. We found particularly strong stimulation of nitrogen-fixing and methane-oxidizing bacteria in the presence of nematodes, as well as increased functional activity associated with methane metabolism and degradation of various carbon compounds. This study provides empirical evidence that the presence of nematodes results in taxonomic and functional shifts in active bacterial communities, indicating that nematodes may play an important role in benthic ecosystem processes.


Assuntos
Bactérias , Ecossistema , Sedimentos Geológicos , Nematoides , Animais , Nematoides/microbiologia , Nematoides/genética , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Biodiversidade , Transcriptoma , Microbiota/genética , Metano/metabolismo
2.
J Environ Manage ; 364: 121427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870790

RESUMO

Tidal wetlands play a critical role in emitting greenhouse gases (GHGs) into the atmosphere; our understanding of the intricate interplay between natural processes and human activities shaping their biogeochemistry and GHG emissions remains lacking. In this study, we delve into the spatiotemporal dynamics and key drivers of the GHG emissions from five tidal wetlands in the Scheldt Estuary by focusing on the interactive impacts of salinity and water pollution, two factors exhibiting contrasting gradients in this estuarine system: pollution escalates as salinity declines. Our findings reveal a marked escalation in GHG emissions when moving upstream, primarily attributed to increased concentrations of organic matter and nutrients, coupled with reduced levels of dissolved oxygen and pH. These low water quality conditions not only promote methanogenesis and denitrification to produce CH4 and N2O, respectively, but also shift the carbonate equilibria towards releasing more CO2. As a result, the most upstream freshwater wetland was the largest GHG emitter with a global warming potential around 35 to 70 times higher than the other wetlands. When moving seaward along a gradient of decreasing urbanization and increasing salinity, wetlands become less polluted and are characterized by lower concentrations of NO3-, TN and TOC, which induces stronger negative impact of elevated salinity on the GHG emissions from the saline wetlands. Consequently, these meso-to polyhaline wetlands released considerably smaller amounts of GHGs. These findings emphasize the importance of integrating management strategies, such as wetland restoration and pollution prevention, that address both natural salinity gradients and human-induced water pollution to effectively mitigate GHG emissions from tidal wetlands.


Assuntos
Gases de Efeito Estufa , Salinidade , Poluição da Água , Áreas Alagadas , Gases de Efeito Estufa/análise , Estuários , Monitoramento Ambiental
3.
Ecotoxicol Environ Saf ; 176: 186-195, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30928890

RESUMO

Oil water-soluble fractions (WSFs) compounds have low persistence in water; evaporating in a matter of hours to days. Nonetheless, they pose high toxicity to exposed biota. Their effects may be instantaneous or delayed, affecting, respectively, mainly survival vs growth and reproduction. We investigated the effects of crude oil WSFs on freshwater meiobenthos, with a focus on nematode assemblages, in community microcosm experiments lasting 15 weeks. Treatments consisted of the application of different concentrations of oil WSFs, i.e. high (100%) medium (50%) and low (10%), and effects were assessed one, three, nine and 15 weeks after contamination, allowing us to detect both short-term and lasting effects of oil-WSF. Additionally, we compared the effects of a single contamination event with those of a so-called 'constant' oil-WSF contamination where we replenished evaporated water with water containing the medium concentration of oil WSF. Next to nematodes, the most abundant meiofaunal taxa were rotifers, gastrotrichs, oligochaetes and tardigrades. Total abundance, different diversity indices, the composition of feeding-types and the age structure were investigated in the assessment of direct oil effects on the structure of nematode assemblages. Limited immediate effects were observed, except for a significant decrease of the index of taxonomic distinctness, which already appeared in the first week. Significant impacts on total nematode abundance, diversity and species composition only became apparent after 9-15 weeks of incubation, indicating that delayed effects of a single exposure are far more pronounced than instantaneous effects. Moreover, for most response variables, the strongest impacts were not observed in the highest-concentration treatment, but in a medium-concentration treatment with regular replenishment of oil WSF, suggesting that internal exposure may be important in generating effects. Furthermore, the predictability of the sensitivity of individual species was sometimes poor, which may not only result from these species' sensitivities, but also from alterations in interspecific interactions in polluted communities. Further toxicity tests should be carried out in order to unravel the main modes of action of crude oil WSF which lead to the observed long-term sublethal effects on nematode communities.


Assuntos
Biota/efeitos dos fármacos , Água Doce/química , Nematoides/efeitos dos fármacos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Solubilidade , Testes de Toxicidade
4.
Arch Environ Contam Toxicol ; 77(3): 421-431, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31292676

RESUMO

Mercury (Hg), one of the most toxic heavy metals, is commonly used in the gold extraction process in small-scale mining operations in many countries. Our previous field work on the impact of mining on soil nematode assemblages in a small-scale mining area in Sibutad, the Philippines, revealed no significant negative effects despite sometimes strongly elevated Hg concentrations. Using a microcosm approach, we now applied similar Hg concentrations as commonly found in these field sites (2.5, 5, and 10 mg/kg Hg) and determined their impact on nematode assemblages from a different soil with different physicochemical soil attributes. Our results demonstrate (a) limited "bottling" effects (incubation effects) after a 45-day incubation period: a nematode abundance decrease of up to 37%, but absence of significant differences in diversity and nematode assemblage composition; (b) that total nematode abundance already decreased at Hg concentrations (2.5 mg/kg), which did not yield significant impacts on other nematode assemblage descriptors, such as assemblage composition and different diversity indices; and (c) that the Hg concentrations found in the Sibutad field sites can be detrimental to soil nematode assemblages. The discrepancy between our microcosm and the field-based results is probably related to differences in physicochemical soil attributes (e.g., OM contents, soil pH), which suggests that nematode-based environmental assessments should be interpreted in a context-dependent manner.


Assuntos
Mercúrio/toxicidade , Nematoides/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Animais , Biodiversidade , Ecotoxicologia/métodos , Mineração , Filipinas , Solo/química
5.
BMC Evol Biol ; 17(1): 71, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270090

RESUMO

BACKGROUND: The resilience of ecosystems to negative impacts is generally higher when high gene flow, species diversity and genetic diversity are present. Population genetic studies are suitable to investigate genetic diversity and estimate gene flow between populations. Seaweed beds form a dynamic shallow water ecosystem influenced by climate change and human exploitation, as such, seaweed beds are a particularly powerful model to investigate ecosystem resilience in coastal areas. We studied the population genetic structure of the new nematode species Paracanthonchus gynodiporata associated with seaweeds in northeastern Brazil. Nematodes are generally believed to have a limited dispersal capacity because of the lack of planktonic larvae. Yet, they can drift on seaweeds, and water currents might be a natural barrier for their dispersal. Populations of P. gynodiporata were sampled over more than 1000 km coastline in regions across major oceanic currents with and without historical exploitation of seaweed. RESULTS: P. gynodiporata is described in an integrative way using mitochondrial and nuclear sequences and morphological data. The 3D model of the head region shows for the first time a detailed view of the ventrosublateral teeth, a character often overlooked in older taxonomic studies of the genus. A total of 17 mitochondrial COI haplotypes were found with one haplotype representing 63 to 83% of the frequencies in each population. AMOVA showed overall little population genetic structure (F ST = 0.05204), and no genetic subdivision between the populations under the influence of the two different water currents were found. Effects of historical seaweed exploitation on population genetic diversity were not detected. In contrast, significant differences between populations were found in morphometric characters. This discrepancy in genetic and morphological differentiation between populations across 1000 km of coastline is surprising in view of the frequently observed presence of several cryptic species at small geographical scale in other macroalgal associated nematodes. CONCLUSIONS: Our results show that cryptic species are not omnipresent in marine nematode species, suggesting that nematodes associated with seaweeds have been able to disperse over large distances across well-known biogeographic barriers.


Assuntos
Variação Genética , Nematoides/genética , Distribuição Animal , Animais , Brasil , Mudança Climática , DNA Mitocondrial/genética , Ecossistema , Feminino , Fluxo Gênico , Haplótipos , Masculino , Oceanos e Mares , Filogeografia , Alga Marinha
6.
Zootaxa ; 3765: 143-60, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24870892

RESUMO

A study of nematodes from a semi-artificial and controlled composting process in Eastern Flanders revealed 35 taxa, 21 of which were new records for Belgium. An updated checklist of free-living, plant-parasitic and entomopathogenic nematodes from terrestrial, freshwater and brackish water habitats in Belgium is presented. The Belgian non-marine nematofauna comprises 418 taxa, representing 4 subclasses, 14 orders, and 76 families. In total 127 new records were added: i.e. 21 from the newly explored compost habitat, 7 from freshwater samples and 99 from published data in literature.


Assuntos
Água Doce , Nematoides/anatomia & histologia , Nematoides/classificação , Solo , Animais , Bélgica , Demografia , Ecossistema , Nematoides/fisiologia , Especificidade da Espécie
7.
Sci Rep ; 14(1): 13180, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849378

RESUMO

The movement ecology of European seabass, Dicentrarchus labrax, remains poorly understood, especially in the northern ranges of its distribution. To investigate migration patterns of seabass from the southern North Sea, we combined data from different projects from four countries using various tagging techniques. This resulted in 146 recaptures (out of 5598 externally marked seabass), 138 detected animals (out of 162 seabass fitted with an acoustic transmitter) and 76 archived depth and temperature series (out of 323 seabass with an archival tag). Using geolocation modelling, we distinguished different migration strategies, whereby individual fish migrated to the eastern English Channel (15.1%), the western English Channel (28.3%), the Celtic Sea and the norther part of the Bay of Biscay (17.0%), or stayed in the North Sea (39.6%). A high number of seabass exhibited fidelity to the North Sea (90.5% of recaptures, 55.3% for acoustic transmitters and 44.7% of archival tags). Although seabass are generally considered to migrate southwards in winter, a large number of individuals (n = 62) were observed in the southern North Sea, where spawning might potentially occur in a particular deep location along the coast of Norfolk in the UK. Our results highlight the need to consider fine-scaled population structuring in fisheries assessment, and indicate that current seasonal fisheries closures are not aligned with the ecology of seabass in the North Sea.


Assuntos
Acústica , Migração Animal , Bass , Telemetria , Animais , Mar do Norte , Migração Animal/fisiologia , Bass/fisiologia , Telemetria/métodos , Estações do Ano
8.
PeerJ ; 12: e17324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784398

RESUMO

Anthropogenic climate change and the associated increase in sea temperatures are projected to greatly impact marine ecosystems. Temperature variation can influence the interactions between species, leading to cascading effects on the abundance, diversity and composition of communities. Such changes in community structure can have consequences on ecosystem stability, processes and the services it provides. Therefore, it is important to better understand the role of species interactions in the development of communities and how they are influenced by environmental factors like temperature. The coexistence of closely related cryptic species, with significant biological and ecological differences, makes this even more complex. This study investigated the effect of temperature on species growth and both intra- and interspecific interactions of three species within the free-living nematode Litoditis marina complex. To achieve this, closed microcosm experiments were conducted on the L. marina species Pm I, Pm III and Pm IV in monoculture and combined cultures at two temperature treatments of 15 °C and 20 °C. A population model was constructed to elucidate and quantify the effects of intra- and interspecific interactions on nematode populations. The relative competitive abilities of the investigated species were quantified using the Modern Coexistence Theory (MCT) framework. Temperature had strong and disparate effects on the population growth of the distinct L. marina species. This indicates temperature could play an important role in the distribution of these cryptic species. Both competitive and facilitative interactions were observed in the experiments. Temperature affected both the type and the strength of the species interactions, suggesting a change in temperature could impact the coexistence of these closely related species, alter community dynamics and consequently affect ecosystem processes and services.


Assuntos
Mudança Climática , Temperatura , Animais , Ecossistema , Dinâmica Populacional , Nematoides/fisiologia , Nematoides/crescimento & desenvolvimento
9.
Front Zool ; 10(1): 1, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23356547

RESUMO

Dispersal and gene flow determine connectivity among populations, and can be studied through population genetics and phylogeography. We here review the results of such a framework for free-living marine nematodes. Although field experiments have illustrated substantial dispersal in nematodes at ecological time scales, analysis of the genetic diversity illustrated the importance of priority effects, founder effects and genetic bottlenecks for population structuring between patches <1 km apart. In contrast, only little genetic structuring was observed within an estuary (<50 km), indicating that these small scale fluctuations in genetic differentiation are stabilized over deeper time scales through extensive gene flow. Interestingly, nematode species with contrasting life histories (extreme colonizers vs persisters) or with different habitat preferences (algae vs sediment) show similar, low genetic structuring. Finally, historical events have shaped the genetic pattern of marine nematodes and show that gene flow is restricted at large geographical scales. We also discuss the presence of substantial cryptic diversity in marine nematodes, and end with highlighting future important steps to further unravel nematode evolution and diversity.

10.
Mar Environ Res ; 188: 106009, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37137243

RESUMO

In this study, "artificial reef" (AR) impacts of offshore windfarms (OWFs) on the surrounding soft-sediments were investigated. Benthic grab samples were collected at nearby (37.5 m) and distant (500 or 350 m) positions from turbines of two Belgian OWFs (Belwind: monopiles and C-Power: jackets). Higher macrobenthos abundance and species richness were found nearby jacket foundations of C-Power compared to distant positions and differences were most pronounced within deeper sediments (i.e., gullies between sandbanks) at intermediate levels of fine sand fractions (10-20%) and total organic matter (0.5-0.9%). Strong benthic enrichment (>1000 ind. m-2, >20 spp. sample-1) was also linked with higher fine sand fractions (>20%) near the jackets. Moreover, nearby sediments showed higher occurrences of coastal species and habitat diversification was promoted by Mytilus edulis shell debris and alive organisms ("biofouling drop-offs"). The lack of similar results around monopiles (Belwind) confirms that the extent of detectable AR-effects depends on site- and turbine specific factors.


Assuntos
Mytilus edulis , Areia , Animais , Ecossistema , Bélgica
11.
Sci Total Environ ; 905: 167341, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748618

RESUMO

Technological advances in tracking methods enable the mapping of anguillid eel migration routes from continental habitats to their spawning sites in the ocean. However, the behaviour and orientation abilities of anguillids are still poorly understood, and have only rarely been studied on the continental shelf. Here we present the results of a study into the vertical and horizontal movement behaviour of 42 European eels (Anguilla anguilla L.) tagged with electronic tags that migrated through the North Sea and English Channel towards and into the Atlantic Ocean during their spawning migration. We used actograms, periodograms and linear mixed effects models to determine the periodicity and significance of the timing and pattern of vertical movement and activity. Overall, eels had a complex behavioural repertoire that included classical diel vertical migration (DVM), reverse DVM and vertical movement behaviours that synchronized with tidal patterns. All of the eels that were tracked showed one or more of these behaviours during their time at liberty, and many exhibited all of them. We also observed that the eels had a higher horizontal migration speed when the current in the favourable direction was stronger. This, together with the vertical movement synchronized with the tides, suggests the eels adopt selective tidal stream transport. Finally, tracked eels had a higher vertical movement range at night compared to daytime. We hypothesize that these behaviours are driven by bio-energetic efficient movement, navigation and predator avoidance.


Assuntos
Anguilla , Animais , Mar do Norte , Migração Animal , Oceano Atlântico , Ecossistema
12.
Mar Environ Res ; 179: 105704, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35850076

RESUMO

The presence and behaviour of bivalves can affect the functioning of seafloor sediments through the irrigation of deeper strata by feeding and respiring through siphonal channels. Here, we investigated the physiological response and consecutive impact on functioning and body condition of the white furrow shell Abra alba in three pH treatments (pH = 8.2, pH = 7.9 and pH = 7.7). Although no pH effect on survival was found, lowered respiration and calcification rates, decreased energy intake (lower absorption rate) and increased metabolic losses (increased excretion rates) occurred at pH âˆ¼ 7.7. These physiological responses resulted in a negative Scope for Growth and a decreased condition index at this pH. This suggests that the physiological changes may not be sufficient to sustain survival in the long term, which would undoubtedly translate into consequences for ecosystem functioning.


Assuntos
Bivalves , Ecossistema , Animais , Bivalves/fisiologia , Calcificação Fisiológica , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Água do Mar
13.
Environ Pollut ; 300: 118913, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114303

RESUMO

Offshore energy acquisition through the construction of wind farms is rapidly becoming one of the major sources of green energy all over the world. The construction of offshore wind farms contributes to the ocean soundscape as steel monopile foundations are commonly hammered into the seabed to anchor wind turbines. This pile driving activity causes repeated, impulsive, low-frequency sounds, reaching far into the environment, which may have an impact on the surrounding marine life. In this study, we investigated the effect of the construction of 50 wind turbine foundations, over a time span of four months, on the presence and movement behaviour of free-swimming, individually tagged Atlantic cod. The turbine foundations were constructed at a distance ranging between 2.3 and 7.1 km from the cod, which resided in a nearby, existing wind farm in the southern North Sea. Our results indicated that local fish remained in the exposed area during and in-between pile-driving activities, but showed some modest changes in movement patterns. The tagged cod did not increase their net movement activity, but moved closer to the scour-bed (i.e. hard substrate), surrounding their nearest turbine, during and after each piling event. Additionally, fish moved further away from the sound source, which was mainly due to the fact that they were positioned closer to a piling event before its start. We found no effect of the time since the last piling event. Long-term changes in movement behaviour can result in energy budget changes, and thereby in individual growth and maturation, eventually determining growth rate of populations. Consequently, although behavioural changes to pile driving in the current study seem modest, we believe that the potential for cumulative effects, and species-specific variation in impact, warrant more tagging studies in the future, with an emphasis on quantification of energy budgets.


Assuntos
Gadus morhua , Animais , Bélgica , Fontes Geradoras de Energia , Ruído , Mar do Norte , Vento
14.
PLoS One ; 17(7): e0271043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877762

RESUMO

Video monitoring is a rapidly evolving tool in aquatic ecological research because of its non-destructive ability to assess fish assemblages. Nevertheless, methodological considerations of video monitoring techniques are often overlooked, especially in more complex sampling designs, causing inefficient data collection, processing, and interpretation. In this study, we discuss how video transect sampling designs could be assessed and how the inter-observer variability, design errors and sampling variability should be quantified and accounted for. The study took place in the coastal areas of the Galapagos archipelago and consisted of a hierarchical repeated-observations sampling design with multiple observers. Although observer bias was negligible for the assessment of fish assemblage structure, diversity and counts of individual species, sampling variability caused by simple counting/detection errors, observer effects and instantaneous fish displacement was often important. Especially for the counts of individual species, sampling variability most often exceeded the variability of the transects and sites. An extensive part of the variability in the fish assemblage structure was explained by the different transects (13%), suggesting that a sufficiently high number of transects is required to account for the within-location variability. Longer transect lengths allowed a better representation of the fish assemblages as sampling variability decreased by 33% if transect length was increased from 10 to 50 meters. However, to increase precision, including more repeats was typically more efficient than using longer transect lengths. The results confirm the suitability of the technique to study reef fish assemblages, but also highlight the importance of a sound methodological assessment since different biological responses and sampling designs are associated with different levels of sampling variability, precision and ecological relevance. Therefore, besides the direct usefulness of the results, the procedures to establish them may be just as valuable for researchers aiming to optimize their own sampling technique and design.


Assuntos
Biodiversidade , Peixes , Animais , Ecossistema , Peixes/fisiologia , Viés de Seleção
15.
Sci Rep ; 12(1): 318, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013394

RESUMO

Recent developments in tracking technology resulted in the mapping of various marine spawning migration routes of the European eel (Anguilla anguilla). However, migration routes in the North Sea have rarely been studied, despite many large European rivers and hence potential eel growing habitat discharge into the North Sea. In this study, we present the most comprehensive map to date with migration routes by silver European eels in the North Sea and document for the first time successful eel migration through the English Channel. Migration tracks were reconstructed for 42 eels tagged in Belgium and 12 in Germany. Additionally, some eels moved up north to exit the North Sea over the British Isles, confirming the existence of two different routes, even for eels exiting from a single river catchment. Furthermore, we observed a wide range in migration speeds (6.8-45.2 km day-1). We hypothesize that these are likely attributed to water currents, with eels migrating through the English Channel being significantly faster than eels migrating northward.


Assuntos
Anguilla/fisiologia , Migração Animal , Animais , Ecossistema , Mar do Norte , Comunicações Via Satélite , Imagens de Satélites , Natação , Fatores de Tempo , Movimentos da Água
16.
Environ Pollut ; 274: 115825, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33339706

RESUMO

The distinct spatial variability in microplastic concentrations between marine regions and habitats calls for a better understanding about the transport pathways of this omnipresent pollutant in the marine environment. This study provides empirical evidence that a sessile filter feeder, the Blue mussel M. edulis, accelerates microplastic deposition by aggregating them into sinking particulate faeces and pseudofaeces. After settling to the seafloor, the bioturbation of benthic fauna quickly buries these microplastics. Collectively, these results suggest that if such biologically-mediated benthic-pelagic coupling would be integrated into hydrodynamic transport models, the spatial variability and source-sink dynamics of microplastics would be better understood. It is proposed that microplastic pollution is monitored through sampling that takes into account faeces and pseudofaeces underneath filter feeders. The implications of this detrital pathway for microplastic transfer to the seafloor, and the role of shellfish mariculture in this process, are discussed. Studies that consider filter feeders and benthic communities from other regions, and during different seasons, are needed to validate the proposed biological pump mechanism across space and time.


Assuntos
Mytilus edulis , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Proteínas de Membrana Transportadoras , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
17.
PLoS One ; 16(4): e0246723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857148

RESUMO

Dispersal is an important life-history trait. In marine meiofauna, and particularly in nematodes, dispersal is generally considered to be mainly passive, i.e. through transport with water currents and bedload transport. Because nematodes have no larval dispersal stage and have a poor swimming ability, their per capita dispersal capacity is expected to be limited. Nevertheless, many marine nematode genera and even species have near-cosmopolitan distributions, and at much smaller spatial scales, can rapidly colonise new habitat patches. Here we demonstrate that certain marine nematodes, like the morphospecies Litoditis marina, can live inside macroalgal structures such as receptacula and-to a lesser extent-floating bladders, which may allow them to raft over large distances with drifting macroalgae. We also demonstrate for the first time that these nematodes can colonize new habitat patches, such as newly deposited macroalgal wrack in the intertidal, not only through seawater but also through air. Our experimental set-up demonstrates that this aerial transport is probably the result of hitchhiking on vectors such as insects, which visit, and move between, the patches of deposited algae. Transport by wind, which has been observed for terrestrial nematodes and freshwater zooplankton, could not be demonstrated. These results can be important for our understanding of both large-scale geographic distribution patterns and of the small-scale colonization dynamics of habitat patches by marine nematodes.


Assuntos
Distribuição Animal/fisiologia , Nematoides/metabolismo , Alga Marinha/metabolismo , Animais , Biodiversidade , Ecossistema , Estuários , Água Doce , Larva/metabolismo , Nematoides/fisiologia , Plantas , Água do Mar , Alga Marinha/fisiologia , Vento
18.
Microb Ecol ; 60(3): 581-91, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20440489

RESUMO

Fecal pellets make up a significant fraction of the global flux of organic matter in oceans, and the associated bacterial communities in particular are a potential food source for marine organisms. However, these communities remain largely unknown. In the present study, the bacterial communities on fecal pellets of the benthic copepod Paramphiascella fulvofasciata feeding on the diatoms Navicula phyllepta and Seminavis robusta were analyzed. The aim of this study was to characterize the bacterial communities associated with the diatoms and the fecal pellets by means of DGGE profiling. Furthermore, isolated bacteria were characterized by means of partial 16S rRNA gene sequencing. The composition of the bacterial microflora on fecal pellets was studied in terms of the effect of the original food source, the age of the fecal pellets and the copepod's identity. Alphaproteobacteria, Flavobacteria, and Bacilli were found on the fecal pellets; whereas on diatoms, exclusively Gammaproteobacteria were identified. Especially after eating N. phyllepta, there was an important increase in bacterial diversity, although the diatom N. phyllepta harbored a less diverse bacterial community than S. robusta. Our data suggest that the additional bacteria originate from the copepod's digestive tract and largely depends on the initial food source.


Assuntos
Bactérias/genética , Copépodes/microbiologia , Diatomáceas/microbiologia , Fezes/microbiologia , Microbiologia da Água , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
19.
Mar Environ Res ; 157: 104868, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32275504

RESUMO

The proliferation of offshore wind energy installations causes a local change in biodiversity because these structures become heavily colonised by large quantities of fouling fauna, attract large mobile crustaceans and fish, and alter the macrofaunal communities in the soft sediments surrounding the wind turbines. Here, we analysed the stable isotope signals (δ13C and δ15N) of the faunal communities associated with a wind turbine, its scour protection layer (SPL) and the surrounding soft sediments. We hypothesised that structural differences in community composition would be reflected in food web complexity and that resource partitioning could be one of the mechanisms contributing to the co-existence of such dense communities. Sampling was conducted at a gravity-based foundation in the Belgian part of the North Sea, where both sessile and mobile organisms were collected along the depth gradient of the turbine, the SPL and the surrounding soft substrate. The results indicated that the structural differences of the communities are reflected in the food web complexity as indicated by the trophic niche size, the trophic diversity and the redundancy of the communities along the depth gradient. Higher food web complexity was associated with zones where high accumulation of organic matter occurs (soft substrate and SPL). Low food web complexity was observed in depth zones that are dominated by sessile suspension-feeding organisms (intertidal and Mytilus zone). The high trophic diversity and low redundancy observed within the trophic clusters of the soft substrate and the Metridium zone indicated that resource partitioning can be a mechanism allowing the co-existence of large densities of a wide variety of species.


Assuntos
Organismos Aquáticos , Biodiversidade , Cadeia Alimentar , Energia Renovável , Vento , Animais , Bélgica , Isótopos de Carbono , Isótopos de Nitrogênio , Mar do Norte
20.
Environ Pollut ; 256: 113479, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31679869

RESUMO

Litter is omnipresent in the ocean where it can be ingested by marine biota. Although ingestion of microplastics (MPs) is abundantly reported, insights into how MP can influence predator-prey interactions currently limits our understanding of the ecological impact of MPs. Here we demonstrate trophic transfer of MPs from zooplankton to benthic filter feeders, through consumption of contaminated prey (i.e. prey with ingested MP). However, predation rates of contaminated prey were significantly lower as compared to predation rates of prey that had no MPs ingested. As filter feeder clearance rates were not affected by consumption of MPs, the lower predation rates of contaminated prey appear to be primarily explained by disruption in zooplankton swimming behaviour that reduces their filtration risk. This is the first study that shows how MPs can change predator-prey interactions that are involved in the coupling between the pelagic and seabed habitat.


Assuntos
Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Zooplâncton/fisiologia , Animais , Biota , Ingestão de Alimentos , Ecossistema , Cadeia Alimentar , Microplásticos/análise , Plásticos , Comportamento Predatório , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa