Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 544, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277569

RESUMO

Following the publication of this article [1], the authors reported that the link to Additional file 11 linked to the wrong set of data. The correct supplementary data is provided in this Correction article (Additional file 11).

2.
BMC Genomics ; 16: 930, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26572248

RESUMO

BACKGROUND: Sexual reproduction is an obligate phase in the life cycle of most eukaryotes. Meiosis varies among organisms, which is reflected by the variability of the gene set associated to the process. Diatoms are unicellular organisms that belong to the stramenopile clade and have unique life cycles that can include a sexual phase. RESULTS: The exploration of five diatom genomes and one diatom transcriptome led to the identification of 42 genes potentially involved in meiosis. While these include the majority of known meiosis-related genes, several meiosis-specific genes, including DMC1, could not be identified. Furthermore, phylogenetic analyses supported gene identification and revealed ancestral loss and recent expansion in the RAD51 family in diatoms. The two sexual species Pseudo-nitzschia multistriata and Seminavis robusta were used to explore the expression of meiosis-related genes: RAD21, SPO11-2, RAD51-A, RAD51-B and RAD51-C were upregulated during meiosis, whereas other paralogs in these families showed no differential expression patterns, suggesting that they may play a role during vegetative divisions. An almost identical toolkit is shared among Pseudo-nitzschia multiseries and Fragilariopsis cylindrus, as well as two species for which sex has not been observed, Phaeodactylum tricornutum and Thalassiosira pseudonana, suggesting that these two may retain a facultative sexual phase. CONCLUSIONS: Our results reveal the conserved meiotic toolkit in six diatom species and indicate that Stramenopiles share major modifications of canonical meiosis processes ancestral to eukaryotes, with important divergences in each Kingdom.


Assuntos
Diatomáceas/genética , Diatomáceas/fisiologia , Meiose/genética , Proteínas de Ciclo Celular/genética , Expressão Gênica , Filogenia , Proteínas/genética , Reprodução , Complexo Sinaptonêmico
3.
Sci Rep ; 6: 19252, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26786712

RESUMO

Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP(+)) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP(+) triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum.


Assuntos
Pontos de Checagem do Ciclo Celular , Diatomáceas/fisiologia , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Meiose , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Mitose , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Prolina/metabolismo , Atrativos Sexuais/farmacologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa