Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569542

RESUMO

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Assuntos
Colite Ulcerativa , Colite , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Hibridização in Situ Fluorescente/métodos , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia
2.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280374

RESUMO

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Assuntos
Complemento C3 , Mucosa Intestinal , Microbiota , Animais , Humanos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neutrófilos , Complemento C3/metabolismo , Células Estromais/metabolismo
3.
Nat Rev Genet ; 23(12): 741-759, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35859028

RESUMO

Improved scale, multiplexing and resolution are establishing spatial nucleic acid and protein profiling methods as a major pillar for cellular atlas building of complex samples, from tissues to full organisms. Emerging methods yield omics measurements at resolutions covering the nano- to microscale, enabling the charting of cellular heterogeneity, complex tissue architectures and dynamic changes during development and disease. We present an overview of the developing landscape of in situ spatial genome, transcriptome and proteome technologies, exemplify their impact on cell biology and translational research, and discuss current challenges for their community-wide adoption. Among many transformative applications, we envision that spatial methods will map entire organs and enable next-generation pathology.


Assuntos
Análise de Célula Única , Transcriptoma , Proteoma , Genoma , Perfilação da Expressão Gênica
4.
Cell ; 151(5): 1017-28, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178121

RESUMO

Ring NTPases of the ASCE superfamily perform a variety of cellular functions. An important question about the operation of these molecular machines is how the ring subunits coordinate their chemical and mechanical transitions. Here, we present a comprehensive mechanochemical characterization of a homomeric ring ATPase-the bacteriophage φ29 packaging motor-a homopentamer that translocates double-stranded DNA in cycles composed of alternating dwells and bursts. We use high-resolution optical tweezers to determine the effect of nucleotide analogs on the cycle. We find that ATP hydrolysis occurs sequentially during the burst and that ADP release is interlaced with ATP binding during the dwell, revealing a high degree of coordination among ring subunits. Moreover, we show that the motor displays an unexpected division of labor: although all subunits of the homopentamer bind and hydrolyze ATP during each cycle, only four participate in translocation, whereas the remaining subunit plays an ATP-dependent regulatory role.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Fagos Bacilares/enzimologia , DNA/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/química , Hidrólise , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
5.
Nature ; 578(7796): 593-599, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051591

RESUMO

Multiple sclerosis is a chronic inflammatory disease of the CNS1. Astrocytes contribute to the pathogenesis of multiple sclerosis2, but little is known about the heterogeneity of astrocytes and its regulation. Here we report the analysis of astrocytes in multiple sclerosis and its preclinical model experimental autoimmune encephalomyelitis (EAE) by single-cell RNA sequencing in combination with cell-specific Ribotag RNA profiling, assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), genome-wide analysis of DNA methylation and in vivo CRISPR-Cas9-based genetic perturbations. We identified astrocytes in EAE and multiple sclerosis that were characterized by decreased expression of NRF2 and increased expression of MAFG, which cooperates with MAT2α to promote DNA methylation and represses antioxidant and anti-inflammatory transcriptional programs. Granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling in astrocytes drives the expression of MAFG and MAT2α and pro-inflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, multiple sclerosis. Our results identify candidate therapeutic targets in multiple sclerosis.


Assuntos
Astrócitos/patologia , Sistema Nervoso Central/patologia , Inflamação/patologia , Fator de Transcrição MafG/genética , Proteínas Repressoras/genética , Animais , Antioxidantes/metabolismo , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Metilação de DNA , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação/genética , Masculino , Metionina Adenosiltransferase/genética , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Fator 2 Relacionado a NF-E2/genética , Análise de Sequência de RNA , Transdução de Sinais , Transcrição Gênica
6.
Brain Behav Immun ; 114: 511-522, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37369340

RESUMO

Among systemic lupus erythematosus (SLE) patients, neuropsychiatric symptoms are highly prevalent, being observed in up to 80% of adult and 95% of pediatric patients. Type 1 interferons, particularly interferon alpha (IFNα), have been implicated in the pathogenesis of SLE and its associated neuropsychiatric symptoms (NPSLE). However, it remains unclear how type 1 interferon signaling in the central nervous system (CNS) might result in neuropsychiatric sequelae. In this study, we validate an NPSLE mouse model and find an elevated peripheral type 1 interferon signature alongside clinically relevant NPSLE symptoms such as anxiety and fatigue. Unbiased single-nucleus sequencing of the hindbrain and hippocampus revealed that interferon-stimulated genes (ISGs) were among the most highly upregulated genes in both regions and that gene pathways involved in cellular interaction and neuronal development were generally repressed among astrocytes, oligodendrocytes, and neurons. Using image-based spatial transcriptomics, we found that the type 1 interferon signature is enriched as spatially distinct patches within the brain parenchyma of these mice. Our results suggest that type 1 interferon in the CNS may play an important mechanistic role in mediating NPSLE behavioral phenotypes by repressing general cellular communication pathways, and that type 1 interferon signaling modulators are a potential therapeutic option for NPSLE.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Adulto , Humanos , Criança , Animais , Camundongos , Vasculite Associada ao Lúpus do Sistema Nervoso Central/complicações , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico , Vasculite Associada ao Lúpus do Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico/complicações , Encéfalo/metabolismo , Interferon-alfa/metabolismo
7.
Nature ; 529(7586): 418-22, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26760202

RESUMO

Metazoan genomes are spatially organized at multiple scales, from packaging of DNA around individual nucleosomes to segregation of whole chromosomes into distinct territories. At the intermediate scale of kilobases to megabases, which encompasses the sizes of genes, gene clusters and regulatory domains, the three-dimensional (3D) organization of DNA is implicated in multiple gene regulatory mechanisms, but understanding this organization remains a challenge. At this scale, the genome is partitioned into domains of different epigenetic states that are essential for regulating gene expression. Here we investigate the 3D organization of chromatin in different epigenetic states using super-resolution imaging. We classified genomic domains in Drosophila cells into transcriptionally active, inactive or Polycomb-repressed states, and observed distinct chromatin organizations for each state. All three types of chromatin domains exhibit power-law scaling between their physical sizes in 3D and their domain lengths, but each type has a distinct scaling exponent. Polycomb-repressed domains show the densest packing and most intriguing chromatin folding behaviour, in which chromatin packing density increases with domain length. Distinct from the self-similar organization displayed by transcriptionally active and inactive chromatin, the Polycomb-repressed domains are characterized by a high degree of chromatin intermixing within the domain. Moreover, compared to inactive domains, Polycomb-repressed domains spatially exclude neighbouring active chromatin to a much stronger degree. Computational modelling and knockdown experiments suggest that reversible chromatin interactions mediated by Polycomb-group proteins play an important role in these unique packaging properties of the repressed chromatin. Taken together, our super-resolution images reveal distinct chromatin packaging for different epigenetic states at the kilobase-to-megabase scale, a length scale that is directly relevant to genome regulation.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/genética , Epigênese Genética , Animais , Linhagem Celular , Posicionamento Cromossômico , Drosophila melanogaster/citologia , Repressão Epigenética , Fractais , Genoma/genética , Proteínas do Grupo Polycomb/metabolismo , Transcrição Gênica
8.
Nat Methods ; 14(12): 1159-1162, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083401

RESUMO

We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in individual cells. We achieve genotyping by introducing barcoded genetic variants into cells as pooled libraries and reading the barcodes out using massively multiplexed fluorescence in situ hybridization. To demonstrate the power of image-based pooled screening, we identified brighter and more photostable variants of the fluorescent protein YFAST among 60,000 variants.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Escherichia coli/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hibridização in Situ Fluorescente/métodos , Mutação , Reprodutibilidade dos Testes
10.
Proc Natl Acad Sci U S A ; 113(39): 11046-51, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27625426

RESUMO

Image-based approaches to single-cell transcriptomics, in which RNA species are identified and counted in situ via imaging, have emerged as a powerful complement to single-cell methods based on RNA sequencing of dissociated cells. These image-based approaches naturally preserve the native spatial context of RNAs within a cell and the organization of cells within tissue, which are important for addressing many biological questions. However, the throughput of these image-based approaches is relatively low. Here we report advances that lead to a drastic increase in the measurement throughput of multiplexed error-robust fluorescence in situ hybridization (MERFISH), an image-based approach to single-cell transcriptomics. In MERFISH, RNAs are identified via a combinatorial labeling approach that encodes RNA species with error-robust barcodes followed by sequential rounds of single-molecule fluorescence in situ hybridization (smFISH) to read out these barcodes. Here we increase the throughput of MERFISH by two orders of magnitude through a combination of improvements, including using chemical cleavage instead of photobleaching to remove fluorescent signals between consecutive rounds of smFISH imaging, increasing the imaging field of view, and using multicolor imaging. With these improvements, we performed RNA profiling in more than 100,000 human cells, with as many as 40,000 cells measured in a single 18-h measurement. This throughput should substantially extend the range of biological questions that can be addressed by MERFISH.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Algoritmos , Divisão Celular , Linhagem Celular Tumoral , Replicação do DNA , Corantes Fluorescentes/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , RNA/metabolismo , Reprodutibilidade dos Testes
11.
Proc Natl Acad Sci U S A ; 113(50): 14456-14461, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911841

RESUMO

Highly multiplexed single-molecule FISH has emerged as a promising approach to spatially resolved single-cell transcriptomics because of its ability to directly image and profile numerous RNA species in their native cellular context. However, background-from off-target binding of FISH probes and cellular autofluorescence-can become limiting in a number of important applications, such as increasing the degree of multiplexing, imaging shorter RNAs, and imaging tissue samples. Here, we developed a sample clearing approach for FISH measurements. We identified off-target binding of FISH probes to cellular components other than RNA, such as proteins, as a major source of background. To remove this source of background, we embedded samples in polyacrylamide, anchored RNAs to this polyacrylamide matrix, and cleared cellular proteins and lipids, which are also sources of autofluorescence. To demonstrate the efficacy of this approach, we measured the copy number of 130 RNA species in cleared samples using multiplexed error-robust FISH (MERFISH). We observed a reduction both in the background because of off-target probe binding and in the cellular autofluorescence without detectable loss in RNA. This process led to an improved detection efficiency and detection limit of MERFISH, and an increased measurement throughput via extension of MERFISH into four color channels. We further demonstrated MERFISH measurements of complex tissue samples from the mouse brain using this matrix-imprinting and -clearing approach. We envision that this method will improve the performance of a wide range of in situ hybridization-based techniques in both cell culture and tissues.


Assuntos
Perfilação da Expressão Gênica/métodos , Hibridização in Situ Fluorescente/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Corantes Fluorescentes , Humanos , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sondas RNA , Análise de Célula Única/métodos
12.
Proc Natl Acad Sci U S A ; 111(23): 8452-7, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912163

RESUMO

Photoactivatable fluorescent proteins (PAFPs) have been widely used for superresolution imaging based on the switching and localization of single molecules. Several properties of PAFPs strongly influence the quality of the superresolution images. These properties include (i) the number of photons emitted per switching cycle, which affects the localization precision of individual molecules; (ii) the ratio of the on- and off-switching rate constants, which limits the achievable localization density; (iii) the dimerization tendency, which could cause undesired aggregation of target proteins; and (iv) the signaling efficiency, which determines the fraction of target-PAFP fusion proteins that is detectable in a cell. Here, we evaluated these properties for 12 commonly used PAFPs fused to both bacterial target proteins, H-NS, HU, and Tar, and mammalian target proteins, Zyxin and Vimentin. Notably, none of the existing PAFPs provided optimal performance in all four criteria, particularly in the signaling efficiency and dimerization tendency. The PAFPs with low dimerization tendencies exhibited low signaling efficiencies, whereas mMaple showed the highest signaling efficiency but also a high dimerization tendency. To address this limitation, we engineered two new PAFPs based on mMaple, which we termed mMaple2 and mMaple3. These proteins exhibited substantially reduced or undetectable dimerization tendencies compared with mMaple but maintained the high signaling efficiency of mMaple. In the meantime, these proteins provided photon numbers and on-off switching rate ratios that are comparable to the best achieved values among PAFPs.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Vimentina/metabolismo , Zixina/metabolismo , Animais , Proteínas de Bactérias/genética , Western Blotting , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Fótons , Multimerização Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência , Vimentina/genética , Zixina/genética
13.
Nature ; 457(7228): 446-50, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19129763

RESUMO

Homomeric ring ATPases perform many vital and varied tasks in the cell, ranging from chromosome segregation to protein degradation. Here we report the direct observation of the intersubunit coordination and step size of such a ring ATPase, the double-stranded-DNA packaging motor in the bacteriophage phi29. Using high-resolution optical tweezers, we find that packaging occurs in increments of 10 base pairs (bp). Statistical analysis of the preceding dwell times reveals that multiple ATPs bind during each dwell, and application of high force reveals that these 10-bp increments are composed of four 2.5-bp steps. These results indicate that the hydrolysis cycles of the individual subunits are highly coordinated by means of a mechanism novel for ring ATPases. Furthermore, a step size that is a non-integer number of base pairs demands new models for motor-DNA interactions.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Fagos Bacilares/enzimologia , Bacillus subtilis/virologia , DNA Viral/química , DNA Viral/metabolismo , Hidrólise , Cinética , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Montagem de Vírus
14.
Nature ; 461(7264): 669-73, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19794496

RESUMO

The ASCE (additional strand, conserved E) superfamily of proteins consists of structurally similar ATPases associated with diverse cellular activities involving metabolism and transport of proteins and nucleic acids in all forms of life. A subset of these enzymes consists of multimeric ringed pumps responsible for DNA transport in processes including genome packaging in adenoviruses, herpesviruses, poxviruses and tailed bacteriophages. Although their mechanism of mechanochemical conversion is beginning to be understood, little is known about how these motors engage their nucleic acid substrates. Questions remain as to whether the motors contact a single DNA element, such as a phosphate or a base, or whether contacts are distributed over several parts of the DNA. Furthermore, the role of these contacts in the mechanochemical cycle is unknown. Here we use the genome packaging motor of the Bacillus subtilis bacteriophage varphi29 (ref. 4) to address these questions. The full mechanochemical cycle of the motor, in which the ATPase is a pentameric-ring of gene product 16 (gp16), involves two phases-an ATP-loading dwell followed by a translocation burst of four 2.5-base-pair (bp) steps triggered by hydrolysis product release. By challenging the motor with a variety of modified DNA substrates, we show that during the dwell phase important contacts are made with adjacent phosphates every 10-bp on the 5'-3' strand in the direction of packaging. As well as providing stable, long-lived contacts, these phosphate interactions also regulate the chemical cycle. In contrast, during the burst phase, we find that DNA translocation is driven against large forces by extensive contacts, some of which are not specific to the chemical moieties of DNA. Such promiscuous, nonspecific contacts may reflect common translocase-substrate interactions for both the nucleic acid and protein translocases of the ASCE superfamily.


Assuntos
Adenosina Trifosfatases/metabolismo , Fagos Bacilares/metabolismo , Bacillus subtilis/virologia , DNA Viral/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Fagos Bacilares/enzimologia , Fagos Bacilares/genética , Transporte Biológico , DNA Viral/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Genoma Viral , Hidrólise , Proteínas Motores Moleculares/química , Fosfatos/metabolismo , Ligação Proteica , Especificidade por Substrato , Proteínas Virais/química
15.
Opt Express ; 22(6): 7028-39, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24664051

RESUMO

We describe the design and implementation of a stimulated emission depletion (STED) microscope which allows simultaneous three-dimensional super-resolution imaging in two colors. A super-continuum laser source is used to provide all spectral bands necessary for excitation and efficient depletion to achieve a lateral and axial resolution of ~35 nm and ~90 nm respectively. We characterize the systems' performance by imaging colloidal particles and single fluorescent molecules. Its biological applicability is demonstrated by dual-color imaging of nuclear pore complexes and of DNA replication sites in mammalian cells.


Assuntos
Microscopia/métodos , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cor , DNA/metabolismo , Replicação do DNA , Humanos , Imageamento Tridimensional , Camundongos , Microscopia/instrumentação , Fase S
16.
PLoS Comput Biol ; 9(7): e1003145, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874187

RESUMO

A molecular device that records time-varying signals would enable new approaches in neuroscience. We have recently proposed such a device, termed a "molecular ticker tape", in which an engineered DNA polymerase (DNAP) writes time-varying signals into DNA in the form of nucleotide misincorporation patterns. Here, we define a theoretical framework quantifying the expected capabilities of molecular ticker tapes as a function of experimental parameters. We present a decoding algorithm for estimating time-dependent input signals, and DNAP kinetic parameters, directly from misincorporation rates as determined by sequencing. We explore the requirements for accurate signal decoding, particularly the constraints on (1) the polymerase biochemical parameters, and (2) the amplitude, temporal resolution, and duration of the time-varying input signals. Our results suggest that molecular recording devices with kinetic properties similar to natural polymerases could be used to perform experiments in which neural activity is compared across several experimental conditions, and that devices engineered by combining favorable biochemical properties from multiple known polymerases could potentially measure faster phenomena such as slow synchronization of neuronal oscillations. Sophisticated engineering of DNAPs is likely required to achieve molecular recording of neuronal activity with single-spike temporal resolution over experimentally relevant timescales.


Assuntos
DNA/metabolismo , Algoritmos , DNA Polimerase Dirigida por DNA/metabolismo , Cinética
17.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979245

RESUMO

Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial mRNA. To overcome this challenge, we combine 1000-fold volumetric expansion with multiplexed error robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH. This method enables high-throughput, spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-MERFISH, we dissect the response of E. coli to carbon starvation, systematically map subcellular RNA organization, and chart the adaptation of a gut commensal B. thetaiotaomicron to micron-scale niches in the mammalian colon. We envision bacterial-MERFISH will be broadly applicable to the study of bacterial single-cell heterogeneity in diverse, spatially structured, and native environments.

18.
Cell Syst ; 15(5): 475-482.e6, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754367

RESUMO

Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep-learning models for cell segmentation and spot detection with a probabilistic gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing spatial transcriptomics data from multiplexed error-robust FISH (MERFISH), sequential fluorescence in situ hybridization (seqFISH), or in situ RNA sequencing (ISS) experiments. Polaris is available through the DeepCell software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org.


Assuntos
Aprendizado Profundo , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Transcriptoma , Hibridização in Situ Fluorescente/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Software , Humanos , Análise de Célula Única/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula/métodos , Animais , Aprendizado de Máquina Supervisionado
19.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732188

RESUMO

Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually-tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep learning models for cell segmentation and spot detection with a probabilistic gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing spatial transcriptomics data from MERFSIH, seqFISH, or ISS experiments. Polaris is available through the DeepCell software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org.

20.
Opt Express ; 21(23): 28583-96, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514370

RESUMO

In super-resolution imaging techniques based on single-molecule switching and localization, the time to acquire a super-resolution image is limited by the maximum density of fluorescent emitters that can be accurately localized per imaging frame. In order to increase the imaging rate, several methods have been recently developed to analyze images with higher emitter densities. One powerful approach uses methods based on compressed sensing to increase the analyzable emitter density per imaging frame by several-fold compared to other reported approaches. However, the computational cost of this approach, which uses interior point methods, is high, and analysis of a typical 40 µm x 40 µm field-of-view super-resolution movie requires thousands of hours on a high-end desktop personal computer. Here, we demonstrate an alternative compressed-sensing algorithm, L1-Homotopy (L1H), which can generate super-resolution image reconstructions that are essentially identical to those derived using interior point methods in one to two orders of magnitude less time depending on the emitter density. Moreover, for an experimental data set with varying emitter density, L1H analysis is ~300-fold faster than interior point methods. This drastic reduction in computational time should allow the compressed sensing approach to be routinely applied to super-resolution image analysis.


Assuntos
Algoritmos , Diagnóstico por Imagem/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa