Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 18(5): 465-469, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28004874

RESUMO

Photoinduced spin-flip in FeII complexes is an ultrafast phenomenon that has the potential to become an alternative to conventional processing and magnetic storage of information. Following the initial excitation by visible light into the singlet metal-to-ligand charge-transfer state, the electronic transition to the high-spin quintet state may undergo different pathways. Here we apply ultrafast XUV (extreme ultraviolet) photoemission spectroscopy to track the low-to-high spin dynamics in the aqueous iron tris-bipyridine complex, [Fe(bpy)3 ]2+ , by monitoring the transient electron density distribution among excited states with femtosecond time resolution. Aided by first-principles calculations, this approach enables us to reveal unambiguously both the sequential and direct de-excitation pathways from singlet to quintet state, with a branching ratio of 4.5:1.

2.
Phys Chem Chem Phys ; 19(22): 14248-14255, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28534587

RESUMO

Photoinduced charge transfer in transition-metal coordination complexes plays a prominent role in photosynthesis and is fundamental for light-harvesting processes in catalytic materials. However, revealing the relaxation pathways of charge separation remains a very challenging task because of the complexity of relaxation channels and ultrashort time scales. Here, we employ ultrafast XUV photoemission spectroscopy to monitor fine mechanistic details of the electron dynamics following optical ligand-to-metal charge-transfer excitation of ferricyanide in aqueous solution. XUV probe light with a time resolution of 100 fs, in combination with density functional theory employing the Dyson orbital formalism, enabled us to decipher the primary and subsequently populated electronic states involved in the relaxation, as well as their energetics on sub-picosecond timescales. We find strong evidence for the spin crossover followed by geometrical distortions due to vibronic interactions (Jahn-Teller effect) in the excited electronic states, rather than localization/delocalization dynamics, as suggested previously.

3.
Phys Chem Chem Phys ; 17(3): 1918-24, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25474360

RESUMO

We explore the early-time electronic relaxation in NaI aqueous solution exposed to a short UV laser pulse. Rather than initiating the charge transfer reaction by resonant photoexcitation of iodide, in the present time-resolved photoelectron spectroscopy study the charge-transfer-to-solvent (CTTS) states are populated via electronic excitation above the vacuum level. By analyzing the temporal evolution of electron yields from ionization of two transient species, assigned to CTTS and its first excited state, we determine both their ultrafast population and relaxation dynamics. Comparison with resonant-excitation studies shows that the highly excited initial states exhibit similar relaxation characteristics as found for resonant excitation. Implications for structure and dynamical response of the hydration cage are discussed.


Assuntos
Iodetos/química , Teoria Quântica , Solventes/química , Água/química , Íons
4.
Opt Express ; 22(9): 10747-60, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921776

RESUMO

We report on a newly built laser-based tabletop setup which enables generation of femtosecond light pulses in the XUV range employing the process of high-order harmonic generation (HHG) in a gas medium. The spatial, spectral, and temporal characteristics of the XUV beam are presented. Monochromatization of XUV light with minimum temporal pulse distortion is the central issue of this work. Off-center reflection zone plates are shown to be advantageous when selection of a desired harmonic is carried out with the use of a single optical element. A cross correlation technique was applied to characterize the performance of the zone plates in the time domain. By using laser pulses of 25 fs length to pump the HHG process, a pulse duration of 45 fs for monochromatized harmonics was achieved in the present setup.

5.
Rev Sci Instrum ; 84(2): 023106, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464194

RESUMO

A newly constructed time-of-flight electron spectrometer of the magnetic bottle type is characterized for electron detection in a broad range of kinetic energies. The instrument is designed to measure the energy spectra of electrons generated from liquids excited by strong laser fields and photons in the range of extreme ultra violet and soft X-rays. Argon inner shell electrons were recorded to calibrate the spectrometer and investigate its characteristics, such as energy resolution and collection efficiency. Its energy resolution ΔE/E of 1.6% allows resolving the Ar 2p spin orbit structure at kinetic energies higher than 100 eV. The collection efficiency is determined and compared to that of the spectrometer in its field-free configuration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa