Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38149678

RESUMO

Studies continue to uncover contributing risk factors for breast cancer (BC) development including genetic variants. Advances in machine learning and big data generated from genetic sequencing can now be used for predicting BC pathogenicity. However, it is unclear which tool developed for pathogenicity prediction is most suited for predicting the impact and pathogenicity of variant effects. A significant challenge is to determine the most suitable data source for each tool since different tools can yield different prediction results with different data inputs. To this end, this work reviews genetic variant databases and tools used specifically for the prediction of BC pathogenicity. We provide a description of existing genetic variants databases and, where appropriate, the diseases for which they have been established. Through example, we illustrate how they can be used for prediction of BC pathogenicity and discuss their associated advantages and disadvantages. We conclude that the tools that are specialized by training on multiple diverse datasets from different databases for the same disease have enhanced accuracy and specificity and are thereby more helpful to the clinicians in predicting and diagnosing BC as early as possible.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Virulência , Bases de Dados Factuais , Fatores de Risco , Aprendizado de Máquina
2.
Hum Genomics ; 18(1): 99, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256852

RESUMO

Single nucleotide variants (SNVs) can exert substantial and extremely variable impacts on various cellular functions, making accurate predictions of their consequences challenging, albeit crucial especially in clinical settings such as in oncology. Laboratory-based experimental methods for assessing these effects are time-consuming and often impractical, highlighting the importance of in-silico tools for variant impact prediction. However, the performance metrics of currently available tools on breast cancer missense variants from benchmarking databases have not been thoroughly investigated, creating a knowledge gap in the accurate prediction of pathogenicity. In this study, the benchmarking datasets ClinVar and HGMD were used to evaluate 21 Artificial Intelligence (AI)-derived in-silico tools. Missense variants in breast cancer genes were extracted from ClinVar and HGMD professional v2023.1. The HGMD dataset focused on pathogenic variants only, to ensure balance, benign variants for the same genes were included from the ClinVar database. Interestingly, our analysis of both datasets revealed variants across genes with varying penetrance levels like low and moderate in addition to high, reinforcing the value of disease-specific tools. The top-performing tools on ClinVar dataset identified were MutPred (Accuracy = 0.73), Meta-RNN (Accuracy = 0.72), ClinPred (Accuracy = 0.71), Meta-SVM, REVEL, and Fathmm-XF (Accuracy = 0.70). While on HGMD dataset they were ClinPred (Accuracy = 0.72), MetaRNN (Accuracy = 0.71), CADD (Accuracy = 0.69), Fathmm-MKL (Accuracy = 0.68), and Fathmm-XF (Accuracy = 0.67). These findings offer clinicians and researchers valuable insights for selecting, improving, and developing effective in-silico tools for breast cancer pathogenicity prediction. Bridging this knowledge gap contributes to advancing precision medicine and enhancing diagnostic and therapeutic approaches for breast cancer patients with potential implications for other conditions.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Bases de Dados Genéticas , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Humanos , Neoplasias da Mama/genética , Mutação de Sentido Incorreto/genética , Feminino , Polimorfismo de Nucleotídeo Único/genética , Biologia Computacional/métodos , Predisposição Genética para Doença , Software
3.
Sensors (Basel) ; 23(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050812

RESUMO

As the most popular technologies of the 21st century, artificial intelligence (AI) and the internet of things (IoT) are the most effective paradigms that have played a vital role in transforming the agricultural industry during the pandemic. The convergence of AI and IoT has sparked a recent wave of interest in artificial intelligence of things (AIoT). An IoT system provides data flow to AI techniques for data integration and interpretation as well as for the performance of automatic image analysis and data prediction. The adoption of AIoT technology significantly transforms the traditional agriculture scenario by addressing numerous challenges, including pest management and post-harvest management issues. Although AIoT is an essential driving force for smart agriculture, there are still some barriers that must be overcome. In this paper, a systematic literature review of AIoT is presented to highlight the current progress, its applications, and its advantages. The AIoT concept, from smart devices in IoT systems to the adoption of AI techniques, is discussed. The increasing trend in article publication regarding to AIoT topics is presented based on a database search process. Lastly, the challenges to the adoption of AIoT technology in modern agriculture are also discussed.


Assuntos
Agricultura , Inteligência Artificial , Tecnologia , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador
4.
Sensors (Basel) ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401468

RESUMO

This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart cities is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study where the bike renting service of Paris-Vélib' Métropole has been managed. This platform could enable smart territories to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques.

5.
J Stroke Cerebrovasc Dis ; 30(10): 105908, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34384670

RESUMO

OBJECTIVES: The relationships of Paired Like Homeodomain 2 (PITX2), Ninjurin 2 (NINJ2), TWIST-Related Protein 1 (TWIST1), Ras Interacting Protein 1 (Rasip1), Solute Carrier Family 17 Member 3 (SLC17A3), Methylmalonyl Co-A Mutase (MUT) and Fer3 Like BHLH Transcription Factor (FERD3L) polymorphisms and gene expression with ischemic stroke have yet to be determined in Malaysia. Hence, this study aimed to explore the associations of single nucleotide polymorphisms (SNPs) and gene expression with ischemic stroke risk among population who resided at the Northern region of Malaysia. MATERIALS AND METHODS: Study subjects including 216 ischemic stroke patients and 203 healthy controls were recruited upon obtaining ethical clearance. SNP genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism assays. Gene expression levels were quantified by real-time polymerase chain reaction assays. Statistical and genetic analyses were conducted with SPSS version 22.2, PLINK version 1.07 and multifactor dimensionality reduction software. RESULTS: Study subjects with G allele, CG or GG genotypes of SLC17A3 rs9379800 demonstrated increased risk of ischemic stroke with the odds ratios ranging from 1.76-fold to 3.14-fold (p<0.05). When stratified study subjects according to the ethnicity, SLC17A3 rs9379800 G allele and CG genotype contributed to 2.14- and 2.96-fold of ischemic stroke risk among Malay population significantly, in the multivariate analysis (p<0.05). However, no significant associations were observed for PITX2, NINJ2, TWIST1, Rasip1, and MUT polymorphisms with ischemic stroke risk in the multivariate analysis for the pooled cases and controls as well as when stratified them according to the ethnicity. Lower mRNA expression levels of Rasip1, SLC17A3, MUT and FERD3L were observed among cases (p<0.05). After FDR adjustment, the mRNA level of SLC17A3 remained significantly associated with ischemic stroke among Malay population (q=0.034). CONCLUSION: In conclusion, this study suggests that SLC17A3 rs9379800 polymorphism and its gene expression contribute to significant ischemic stroke risk among Malaysian population, particularly the Malay who resided at the Northern Region of the country. Our findings can provide useful information for the future diagnosis, management and treatment of ischemic stroke patients.


Assuntos
AVC Isquêmico/genética , Polimorfismo de Nucleotídeo Único , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , AVC Isquêmico/diagnóstico , AVC Isquêmico/epidemiologia , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Medição de Risco , Fatores de Risco
6.
Entropy (Basel) ; 23(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34573857

RESUMO

Artificial intelligence in healthcare can potentially identify the probability of contracting a particular disease more accurately. There are five common molecular subtypes of breast cancer: luminal A, luminal B, basal, ERBB2, and normal-like. Previous investigations showed that pathway-based microarray analysis could help in the identification of prognostic markers from gene expressions. For example, directed random walk (DRW) can infer a greater reproducibility power of the pathway activity between two classes of samples with a higher classification accuracy. However, most of the existing methods (including DRW) ignored the characteristics of different cancer subtypes and considered all of the pathways to contribute equally to the analysis. Therefore, an enhanced DRW (eDRW+) is proposed to identify breast cancer prognostic markers from multiclass expression data. An improved weight strategy using one-way ANOVA (F-test) and pathway selection based on the greatest reproducibility power is proposed in eDRW+. The experimental results show that the eDRW+ exceeds other methods in terms of AUC. Besides this, the eDRW+ identifies 294 gene markers and 45 pathway markers from the breast cancer datasets with better AUC. Therefore, the prognostic markers (pathway markers and gene markers) can identify drug targets and look for cancer subtypes with clinically distinct outcomes.

7.
Pak J Pharm Sci ; 32(3 Special): 1395-1408, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31551221

RESUMO

Numerous cancer studies have combined different datasets for the prognosis of patients. This study incorporated four networks for significant directed random walk (sDRW) to predict cancerous genes and risk pathways. The study investigated the feasibility of cancer prediction via different networks. In this study, multiple micro array data were analysed and used in the experiment. Six gene expression datasets were applied in four networks to study the effectiveness of the networks in sDRW in terms of cancer prediction. The experimental results showed that one of the proposed networks is outstanding compared to other networks. The network is then proposed to be implemented in sDRW as a walker network. This study provides a foundation for further studies and research on other networks. We hope these finding will improve the prognostic methods of cancer patients.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Algoritmos , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Humanos , Análise em Microsséries , Mapas de Interação de Proteínas/genética , Distribuição Aleatória , Reprodutibilidade dos Testes , Transcriptoma
8.
Malays J Med Sci ; 22(Spec Issue): 9-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27006633

RESUMO

Neuroimaging is a new technique used to create images of the structure and function of the nervous system in the human brain. Currently, it is crucial in scientific fields. Neuroimaging data are becoming of more interest among the circle of neuroimaging experts. Therefore, it is necessary to develop a large amount of neuroimaging tools. This paper gives an overview of the tools that have been used to image the structure and function of the nervous system. This information can help developers, experts, and users gain insight and a better understanding of the neuroimaging tools available, enabling better decision making in choosing tools of particular research interest. Sources, links, and descriptions of the application of each tool are provided in this paper as well. Lastly, this paper presents the language implemented, system requirements, strengths, and weaknesses of the tools that have been widely used to image the structure and function of the nervous system.

9.
Bioprocess Biosyst Eng ; 37(3): 521-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23892659

RESUMO

Microbial strain optimization focuses on improving technological properties of the strain of microorganisms. However, the complexities of the metabolic networks, which lead to data ambiguity, often cause genetic modification on the desirable phenotypes difficult to predict. Furthermore, vast number of reactions in cellular metabolism lead to the combinatorial problem in obtaining optimal gene deletion strategy. Consequently, the computation time increases exponentially with the increase in the size of the problem. Hence, we propose an extension of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by integrating OptKnock into BAFBA to validate the result. This paper presents a number of computational experiments to test on the performance and capability of BAFBA. Escherichia coli, Bacillus subtilis and Clostridium thermocellum are the model organisms in this paper. Also included is the identification of potential reactions to improve the production of succinic acid, lactic acid and ethanol, plus the discussion on the changes in the flux distribution of the predicted mutants. BAFBA shows potential in suggesting the non-intuitive gene knockout strategies and a low variability among the several runs. The results show that BAFBA is suitable, reliable and applicable in predicting optimal gene knockout strategy.


Assuntos
Algoritmos , Bacillus subtilis/metabolismo , Clostridium thermocellum/metabolismo , Escherichia coli/metabolismo , Bacillus subtilis/genética , Clostridium thermocellum/genética , Simulação por Computador , Escherichia coli/genética , Genes Bacterianos
10.
ScientificWorldJournal ; 2014: 123019, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25121109

RESUMO

In the original particle swarm optimisation (PSO) algorithm, the particles' velocities and positions are updated after the whole swarm performance is evaluated. This algorithm is also known as synchronous PSO (S-PSO). The strength of this update method is in the exploitation of the information. Asynchronous update PSO (A-PSO) has been proposed as an alternative to S-PSO. A particle in A-PSO updates its velocity and position as soon as its own performance has been evaluated. Hence, particles are updated using partial information, leading to stronger exploration. In this paper, we attempt to improve PSO by merging both update methods to utilise the strengths of both methods. The proposed synchronous-asynchronous PSO (SA-PSO) algorithm divides the particles into smaller groups. The best member of a group and the swarm's best are chosen to lead the search. Members within a group are updated synchronously, while the groups themselves are asynchronously updated. Five well-known unimodal functions, four multimodal functions, and a real world optimisation problem are used to study the performance of SA-PSO, which is compared with the performances of S-PSO and A-PSO. The results are statistically analysed and show that the proposed SA-PSO has performed consistently well.


Assuntos
Algoritmos , Modelos Teóricos , Análise Numérica Assistida por Computador , Processos Estocásticos , Simulação por Computador , Comportamento de Massa
11.
ScientificWorldJournal ; 2014: 973063, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25243236

RESUMO

Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.


Assuntos
Algoritmos , Eletroencefalografia/métodos , Movimentos Oculares/fisiologia , Estimulação Luminosa/métodos , Humanos
12.
Malays J Med Sci ; 21(2): 20-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24876803

RESUMO

BACKGROUND: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN). METHODS: In the present study, we separately imputed datasets of the Escherichia coli S.O.S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error. RESULTS: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset). CONCLUSION: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes.

13.
Sci Rep ; 14(1): 21523, 2024 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277702

RESUMO

Pompe disease (OMIM #232300), a rare genetic disorder, leads to glycogen buildup in the body due to an enzyme deficiency, particularly harming the heart and muscles. Infantile-onset Pompe disease (IOPD) requires urgent treatment to prevent mortality, but the unavailability of these methods often delays diagnosis. Our study aims to streamline IOPD diagnosis in the UAE using electronic health records (EHRs) for faster, more accurate detection and timely treatment initiation. This study utilized electronic health records from the Abu Dhabi Healthcare Company (SEHA) healthcare network in the UAE to develop an expert rule-based screening approach operationalized through a dashboard. The study encompassed six diagnosed IOPD patients and screened 93,365 subjects. Expert rules were formulated to identify potential high-risk IOPD patients based on their age, particular symptoms, and creatine kinase levels. The proposed approach was evaluated using accuracy, sensitivity, and specificity. The proposed approach accurately identified five true positives, one false negative, and four false positive IOPD cases. The false negative case involved a patient with both Pompe disease and congenital heart disease. The focus on CHD led to the overlooking of Pompe disease, exacerbated by no measurement of creatine kinase. The false positive cases were diagnosed with Mitochondrial DNA depletion syndrome 12-A (SLC25A4 gene), Immunodeficiency-71 (ARPC1B mutation), Niemann-Pick disease type C (NPC1 gene mutation leading to frameshift), and Group B Streptococcus meningitis. The proposed approach of integrating expert rules with a dashboard facilitated efficient data visualization and automated patient screening, which aids in the early detection of Pompe disease. Future studies are encouraged to investigate the application of machine learning methodologies to enhance further the precision and efficiency of identifying patients with IOPD.


Assuntos
Algoritmos , Regras de Decisão Clínica , Registros Eletrônicos de Saúde , Doença de Depósito de Glicogênio Tipo II , Triagem Neonatal , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/patologia , Estudos Retrospectivos , Emirados Árabes Unidos , Diagnóstico Precoce , Triagem Neonatal/métodos , Humanos , Masculino , Feminino , Recém-Nascido , Lactente
14.
Front Pharmacol ; 14: 1182465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601065

RESUMO

The emergence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) posed a serious worldwide threat and emphasized the urgency to find efficient solutions to combat the spread of the virus. Drug repurposing has attracted more attention than traditional approaches due to its potential for a time- and cost-effective discovery of new applications for the existing FDA-approved drugs. Given the reported success of machine learning (ML) in virtual drug screening, it is warranted as a promising approach to identify potential SARS-CoV-2 inhibitors. The implementation of ML in drug repurposing requires the presence of reliable digital databases for the extraction of the data of interest. Numerous databases archive research data from studies so that it can be used for different purposes. This article reviews two aspects: the frequently used databases in ML-based drug repurposing studies for SARS-CoV-2, and the recent ML models that have been developed for the prospective prediction of potential inhibitors against the new virus. Both types of ML models, Deep Learning models and conventional ML models, are reviewed in terms of introduction, methodology, and its recent applications in the prospective predictions of SARS-CoV-2 inhibitors. Furthermore, the features and limitations of the databases are provided to guide researchers in choosing suitable databases according to their research interests.

15.
J Integr Bioinform ; 20(2)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37341516

RESUMO

Analyzing metabolic pathways in systems biology requires accurate kinetic parameters that represent the simulated in vivo processes. Simulation of the fermentation pathway in the Saccharomyces cerevisiae kinetic model help saves much time in the optimization process. Fitting the simulated model into the experimental data is categorized under the parameter estimation problem. Parameter estimation is conducted to obtain the optimal values for parameters related to the fermentation process. This step is essential because insufficient identification of model parameters can cause erroneous conclusions. The kinetic parameters cannot be measured directly. Therefore, they must be estimated from the experimental data either in vitro or in vivo. Parameter estimation is a challenging task in the biological process due to the complexity and nonlinearity of the model. Therefore, we propose the Artificial Bee Colony algorithm (ABC) to estimate the parameters in the fermentation pathway of S. cerevisiae to obtain more accurate values. A metabolite with a total of six parameters is involved in this article. The experimental results show that ABC outperforms other estimation algorithms and gives more accurate kinetic parameter values for the simulated model. Most of the estimated kinetic parameter values obtained from the proposed algorithm are the closest to the experimental data.


Assuntos
Algoritmos , Saccharomyces cerevisiae , Fermentação , Cinética , Simulação por Computador , Modelos Biológicos
16.
Front Genet ; 14: 1258083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38371307

RESUMO

Rare diseases (RDs) are rare complex genetic diseases affecting a conservative estimate of 300 million people worldwide. Recent Next-Generation Sequencing (NGS) studies are unraveling the underlying genetic heterogeneity of this group of diseases. NGS-based methods used in RDs studies have improved the diagnosis and management of RDs. Concomitantly, a suite of bioinformatics tools has been developed to sort through big data generated by NGS to understand RDs better. However, there are concerns regarding the lack of consistency among different methods, primarily linked to factors such as the lack of uniformity in input and output formats, the absence of a standardized measure for predictive accuracy, and the regularity of updates to the annotation database. Today, artificial intelligence (AI), particularly deep learning, is widely used in a variety of biological contexts, changing the healthcare system. AI has demonstrated promising capabilities in boosting variant calling precision, refining variant prediction, and enhancing the user-friendliness of electronic health record (EHR) systems in NGS-based diagnostics. This paper reviews the state of the art of AI in NGS-based genetics, and its future directions and challenges. It also compare several rare disease databases.

17.
J Integr Bioinform ; 19(3)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852123

RESUMO

Metabolic engineering has expanded in importance and employment in recent years and is now extensively applied particularly in the production of biomass from microbes. Metabolic network models have been employed extravagantly in computational processes developed to enhance metabolic production and suggest changes in organisms. The crucial issue has been the unrealistic flux distribution presented in prior work on rational modelling framework adopting Optknock and OptGene. In order to address the problem, a hybrid of Bees Algorithm and Regulatory On/Off Minimization (BAROOM) is used. By employing Escherichia coli as the model organism, the most excellent set of genes in E. coli that can be removed and advance the production of succinate can be decided. Evidences shows that BAROOM outperforms alternative strategies used to escalate in succinate production in model organisms like E. coli by selecting the best set of genes to be removed.


Assuntos
Escherichia coli , Ácido Succínico , Algoritmos , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Modelos Biológicos , Ácido Succínico/metabolismo
18.
J Integr Bioinform ; 18(3)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348418

RESUMO

Microorganisms commonly produce many high-demand industrial products like fuels, food, vitamins, and other chemicals. Microbial strains are the strains of microorganisms, which can be optimized to improve their technological properties through metabolic engineering. Metabolic engineering is the process of overcoming cellular regulation in order to achieve a desired product or to generate a new product that the host cells do not usually need to produce. The prediction of genetic manipulations such as gene knockout is part of metabolic engineering. Gene knockout can be used to optimize the microbial strains, such as to maximize the production rate of chemicals of interest. Metabolic and genetic engineering is important in producing the chemicals of interest as, without them, the product yields of many microorganisms are normally low. As a result, the aim of this paper is to propose a combination of the Bat algorithm and the minimization of metabolic adjustment (BATMOMA) to predict which genes to knock out in order to increase the succinate and lactate production rates in Escherichia coli (E. coli).


Assuntos
Escherichia coli , Redes e Vias Metabólicas , Algoritmos , Simulação por Computador , Escherichia coli/genética , Técnicas de Inativação de Genes , Engenharia Metabólica
19.
J Integr Bioinform ; 17(1)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374287

RESUMO

The metabolic network is the reconstruction of the metabolic pathway of an organism that is used to represent the interaction between enzymes and metabolites in genome level. Meanwhile, metabolic engineering is a process that modifies the metabolic network of a cell to increase the production of metabolites. However, the metabolic networks are too complex that cause problem in identifying near-optimal knockout genes/reactions for maximizing the metabolite's production. Therefore, through constraint-based modelling, various metaheuristic algorithms have been improvised to optimize the desired phenotypes. In this paper, PSOMOMA was compared with CSMOMA and ABCMOMA for maximizing the production of succinic acid in E. coli. Furthermore, the results obtained from PSOMOMA were validated with results from the wet lab experiment.


Assuntos
Escherichia coli , Modelos Biológicos , Algoritmos , Escherichia coli/genética , Engenharia Metabólica , Redes e Vias Metabólicas , Ácido Succínico
20.
Methods Mol Biol ; 1986: 255-266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31115893

RESUMO

In gene expression studies, missing values are a common problem with important consequences for the interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics examination tools are used for cancer prediction, including the data set matrix (Bailey et al., Cell 173(2):371-385, 2018); thus, it is necessary to resolve the problem of missing-values imputation. This chapter presents a review of the research on missing-values imputation approaches for gene expression data. By using local and global correlation of the data, we were able to focus mostly on the differences between the algorithms. We classified the algorithms as global, hybrid, local, or knowledge-based techniques. Additionally, this chapter presents suitable assessments of the different approaches. The purpose of this review is to focus on developments in the current techniques for scientists rather than applying different or newly developed algorithms with identical functional goals. The aim was to adapt the algorithms to the characteristics of the data.


Assuntos
Algoritmos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ontologia Genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa