Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 31(11): 101794, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37822695

RESUMO

Introduction: The adverse effects of clinically used anti-cancer medication and the rise in resistive micro-organisms have limited therapeutic options. Multiple anti-cancer drugs are derived from medicinal herbs which also have shown anti-bacterial effects. This study aimed to identify the optimal extraction solvent for detecting the cytotoxic and anti-bacterial effects of Calligonum comosum (C. Comosum) and Rumex vesicarius (R. Vesicarius) extracts. Additionally, the study aimed to identify active metabolites and assess their potential as future drug candidates for anti-cancer and anti-bacterial therapeutics. Methods: Leaves from both plants were extracted using ethanol, ethyl acetate, chloroform, and water. The cytotoxic effects of the extracts were tested on liver, colon, and breast cancer cell lines. Apoptosis was assessed using High Content Imaging (HCI) and the ApoTox triplex Glo assay. The anti-bacterial effects were determined using agar-well diffusion. Liquid chromatography-mass spectrometry (LC-MS) was used to tentatively identify the secondary metabolites. In silico computational studies were conducted to determine the metabolites' mode of action, safety, and pharmacokinetic properties. Results: The ethanolic extract of C. Comosum exhibited potent cytotoxicity on breast cancer cell lines, with IC50 values of 54.97 µg/mL and 58 µg/mL for KAIMRC2 and MDA-MB-231, respectively. It also induced apoptosis in colon and breast cancer cell lines. All tested extracts of C. Comosum and R. Vesicarius demonstrated anti-bacterial activity against Staphylococcus aureus and Escherichia coli. Seven active metabolites were identified, one of which is Kaempferol 3-O-Glucoside-7-O-Rhamnoside, which showed strong (predicted) anti-cancer activity. Kaempferol 3-O-Glucoside-7-O-Rhamnoside and Quercetin-3-O-Glucuronide also exhibited potential anti-bacterial effects on gram-positive and negative bacteria. Conclusion: Ethanol extraction of C. Comosum solubilizes active metabolites with potential therapeutic applications in cancer treatment and bacterial infections. Kaempferol 3-O-Glucoside-7-O-Rhamnoside, in particular, shows promise as a dual therapeutic drug candidate for further research and development to improve its efficacy, safety, and pharmacokinetic profile.

2.
Mar Drugs ; 20(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35621954

RESUMO

Nowadays, the logarithmic production of existing well-known food materials is unable to keep up with the demand caused by the exponential growth of the human population in terms of the equality of access to food materials. Famous local food materials with treasury properties such as mangrove fruits are an excellent source to be listed as emerging food candidates with ethnomedicinal properties. Thus, this study reviews the nutrition content of several edible mangrove fruits and the innovation to improve the fruit into a highly economic food product. Within the mangrove fruit, the levels of primary metabolites such as carbohydrates, protein, and fat are acceptable for daily intake. The mangrove fruits, seeds, and endophytic fungi are rich in phenolic compounds, limonoids, and their derivatives as the compounds present a multitude of bioactivities such as antimicrobial, anticancer, and antioxidant. In the intermediary process, the flour of mangrove fruit stands as a supplementation for the existing flour with antidiabetic or antioxidant properties. The mangrove fruit is successfully transformed into many processed food products. However, limited fruits from species such as Bruguiera gymnorrhiza, Rhizophora mucronata, Sonneratia caseolaris, and Avicennia marina are commonly upgraded into traditional food, though many more species demonstrate ethnomedicinal properties. In the Middle East, A. marina is the dominant species, and the study of the phytochemicals and fruit development is limited. Therefore, studies on the development of mangrove fruits to functional for other mangrove species are demanding. The locally accepted mangrove fruit is coveted as an alternate food material to support the sustainable development goal of eliminating world hunger in sustainable ways.


Assuntos
Frutas , Rhizophoraceae , Antioxidantes/metabolismo , Alimento Funcional , Humanos , Compostos Fitoquímicos/análise , Rhizophoraceae/metabolismo
3.
Molecules ; 27(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432115

RESUMO

An in silico approach applying computer-simulated models helps enhance biomedicines by sightseeing the pharmacology of potential therapeutics. Currently, an in silico study combined with in vitro assays investigated the antimicrobial ability of Limoniastrum monopetalum and silver nanoparticles (AgNPs) fabricated by its aid. AgNPs mediated by L. monopetalum were characterized using FTIR, TEM, SEM, and DLS. L. monopetalum metabolites were detected by QTOF-LCMS and assessed using an in silico study for pharmacological properties. The antibacterial ability of an L. monopetalum extract and AgNPs was investigated. PASS Online predictions and the swissADME web server were used for antibacterial activity and potential molecular target metabolites, respectively. Spherical AgNPs with a 68.79 nm average size diameter were obtained. Twelve biomolecules (ferulic acid, trihydroxy-octadecenoic acid, catechin, pinoresinol, gallic acid, myricetin, 6-hydroxyluteolin, 6,7-dihydroxy-5-methoxy 7-O-ß-d-glucopyranoside, methyl gallate, isorhamnetin, chlorogenic acid, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 6-O-(6-deoxy-ß-l-mannopyranosyl)-ß-d-glucopyranoside) were identified. The L. monopetalum extract and AgNPs displayed antibacterial effects. The computational study suggested that L. Monopetalum metabolites could hold promising antibacterial activity with minimal toxicity and an acceptable pharmaceutical profile. The in silico approach indicated that metabolites 8 and 12 have the highest antibacterial activity, and swissADME web server results suggested the CA II enzyme as a potential molecular target for both metabolites. Novel therapeutic agents could be discovered using in silico molecular target prediction combined with in vitro studies. Among L. Monopetalum metabolites, metabolite 12 could serve as a starting point for potential antibacterial treatment for several human bacterial infections.


Assuntos
Nanopartículas Metálicas , Plumbaginaceae , Humanos , Prata/farmacologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
4.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500402

RESUMO

In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Klebsiella pneumoniae , Antibacterianos/farmacologia , Escherichia coli , Bactérias
5.
Molecules ; 26(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477682

RESUMO

By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.


Assuntos
Apocynaceae/química , Apocynaceae/classificação , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Monoterpenos/química , Monoterpenos/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
6.
PeerJ ; 12: e17023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440409

RESUMO

Adansonia digitata L. is a royal tree that is highly valued in Africa for its medicinal and nutritional properties. The objective of this study was to use its fruit shell extract to develop new, powerful mono and bimetallic nanoparticles (NPs) and biochar (BC) using an eco-friendly approach. Silver (Ag), iron oxide (FeO), the bimetallic Ag-FeO NPs, as well as (BC) were fabricated by A. digitata fruit shell extract through a reduction process and biomass pyrolysis, respectively, and their activity against tomato pathogenic fungi Alternaria sp., Sclerotinia sclerotiorum, Fusarium equiseti, and Fusarium venenatum were detected by agar dilution method. The Ag, FeO, Ag-FeONPs, and BC were characterized using a range of powerful analytical techniques such as ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform-Infra Red (FT-IR), dynamic light scatter (DLS), and zeta potential analysis. The fabricated Ag, FeO and Ag-FeO NPs have demonstrated a remarkable level of effectiveness in combating fungal strains. UV-Vis spectra ofAg, FeO, Ag-FeONPs, and BC show broad exhibits peaks at 338, 352, 418, and 480 nm, respectively. The monometallic, bimetallic NPs, and biochar have indicated the presence in various forms mostly in Spherical-shaped. Their size varied from 102.3 to 183.5 nm and the corresponding FTIR spectra suggested that the specific organic functional groups from the plant extract played a significant role in the bio-reduction process. Ag and Ag-FeO NPs exhibited excellent antifungal activity against pathogenic fungi Alternaria sp., S. sclerotiorum, F. equiseti, and F. venenatum. The current study could be a significant achievement in the field of antifungal agents since has the potential to develop new approaches for treating fungal infections.


Assuntos
Adansonia , Carvão Vegetal , Solanum lycopersicum , Espectroscopia de Infravermelho com Transformada de Fourier , Antifúngicos/farmacologia , Alternaria , Raios Infravermelhos , Extratos Vegetais
7.
Sci Rep ; 14(1): 4162, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378923

RESUMO

Applying extracts from plants is considered a safe approach in biomedicine and bio-nanotechnology. The present report is considered the first study that evaluated the seeds of Lasiurus scindicus and Panicum turgidum as biogenic agents in the synthesis of silver nanoparticles (AgNPs) which had bioactivity against cancer cells and bacteria. Assessment of NPs activity against varied cell lines (colorectal cancer HCT116 and breast cancer MDA MBA 231 and MCF 10A used as control) was performed beside the antibacterial efficiency. Different techniques (DLS, TEM, EDX and FTIR) were applied to characterize the biosynthesized AgNPs. The phytochemicals from both L. scindicus and Panicum turgidum were identified by GC-MS analysis. Spherical monodisperse NPs at average diameters of 149.6 and 100.4 nm were obtained from seed extract of L. scindicus (L-AgNPs) and P. turgidum, (P-AgNPs) respectively. A strong absorption peak at 3 keV is observed by the EDX spectrum in the tested NPs. Our study provided effective NPs in mitigating the tested cell lines and the lowest IC50 were 7.8 and 10.30 for MDA MB231 treated by L-AgNPs and P-AgNPs, respectively. Both fabricated NPs might differentially target the MDA MB231 cells compared to HCT116 and MCF10A. Ultrastructural changes and damage for the NPs-treated MDA MB231 cells were studied using TEM and LSM analysis. Antibacterial activity was also observed. About 200 compounds were identified in L. scindicus and P. turgidum by GC-MS analysis might be responsible for the NPs reduction and capping abilities. Efficient NPs against cancer cells and microbes were obtained, however large-scale screening is needed to validate our findings.


Assuntos
Nanopartículas Metálicas , Panicum , Prata/química , Panicum/metabolismo , Nanopartículas Metálicas/química , Extratos Vegetais/química , Antibacterianos/química , Sementes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Biol Macromol ; 254(Pt 3): 127900, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931863

RESUMO

Enzyme immobilization on solid support offers advantages over free enzymes by overcoming characteristic limitations. To synthesize new stable and hyperactive nano-biocatalysts (co-precipitation method), ginger peroxidase (GP) was surface immobilized (adsorption) on ZnO/SnO2 and ZnO/SnO2/SA nanocomposite with immobilization efficacy of 94 % and 99 %, respectively. Thereafter, catalytic and biochemical characteristics of free and immobilized GP were investigated by deploying various techniques, i.e., FTIR, PXRD, SEM, and PL. Diffraction peaks emerged at 2θ values of 26°, 33°, 37°, 51°, 31°, 34°, 36°, 56°, indicating the formation of SnO2 and ZnO. The OH stretching of the H2O molecules was attributed to broad peaks between 3200 and 3500 cm-1, whereas ZnO/SnO2 spikes occurred in the 1626-1637 cm-1 range. SnO stretching mode and ZnO terminal vibrational patterns have been verified at corresponding wavelengths of 625 cm-1 and 560 cm-1. Enzyme entrapment onto substrate was verified via interactions between GP and ZnO/SnO2/SA as corroborated by signals beneath 1100 cm-1. GP-immobilized fractions were optimally active at pH 5, 50 °C, and retained maximum activity after storage of 4 weeks at -4 °C. Kinetic parameters were determined by using a Lineweaver-Burk plot and Vmax for free GP, ZnO/SnO2/GP and ZnO/SnO2/SA/GP with guaiacol as a substrate, were found to be 322.58, 49.01 and 11.45 (µM/min) respectively. A decrease in values of Vmax and KM indicates strong adsorption of peroxidase on support and maximum affinity between nano support and enzyme, respectively. For environmental remediation, free ginger peroxidase (GP), ZnO/SnO2/GP and ZnO/SnO2/SA/GP fractions effectively eradicated highly intricate dye. Multiple scavengers had a significant impact on the depletion of the dye. In conclusion, ZnO/SnO2 and ZnO/SnO2/SA nanostructures comprise an ecologically acceptable and intriguing carrier for enzyme immobilization.


Assuntos
Nanocompostos , Óxido de Zinco , Peroxidase/química , Óxido de Zinco/química , Alginatos/química , Nanocompostos/química , Peroxidases , Enzimas Imobilizadas/química , Água
9.
Sci Rep ; 14(1): 15211, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956076

RESUMO

Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.


Assuntos
Nanopartículas Metálicas , Prata , Microbiologia do Solo , Prata/química , Prata/farmacologia , Arábia Saudita , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Clima Desértico , Fungos/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
10.
PeerJ ; 12: e17241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854801

RESUMO

Tea tree (Melaleuca alternifolia) oil (TTO) is an antimicrobial agent, and hence, its use in fabricating nanoparticles (NP) may be useful in providing more efficacious antimicrobial agents. The current research aimed to test the antimicrobial efficacy of TTO and its TTO-Metal-NPs against oral microbes: Porphyromonas gingivalis, Enterococcus faecalis, and Streptococcus mutans. The antimicrobial activity of TTO and zinc (Zn) and iron (Fe) nanoparticles (NPs) and the combined effects of antimicrobial agents were investigated using agar well diffusion assays. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of TTO. Field emission scanning electron microscopy (FE-SEM), dynamic light scatter (DLS), and zeta potential were utilized to analyze the biogenic nanoparticles' morphology, size, and potential. The antimicrobial mode of action was determined by assessing the morphological changes under scanning electron microscopy (SEM). The TTO extracts converted Zn and Fe ions to NPs, having an average size of 97.50 (ZnNPs) and 102.4 nm (FeNPs). All tested agents had significant antibacterial efficacy against the tested oral microbes. However, the TTO extract was more efficacious than the NPs. Combination treatment of TTO with antibiotics resulted in partial additive effects against P. gingivalis and partial antagonistic effects against E. faecalis, S. mutans, and common mouthwashes (Oral B and chlorhexidine). TTO and NP-treated bacteria underwent morphological changes on treatment. M. alternifolia phytochemicals could be useful for further research and development of antimicrobial NPs. The current study highlights the variance in activity observed for different types of bacteria and antagonistic effects seen with common mouthwashes, which represent a threat to therapeutic efficacy and heighten the risk of clinical microbial resistance.


Assuntos
Nanopartículas Metálicas , Porphyromonas gingivalis , Streptococcus mutans , Óleo de Melaleuca , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Nanopartículas Metálicas/química , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Enterococcus faecalis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Boca/microbiologia , Microscopia Eletrônica de Varredura , Melaleuca/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Humanos , Ferro , Espectroscopia de Infravermelho com Transformada de Fourier
11.
ACS Omega ; 9(24): 26245-26256, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911750

RESUMO

Penicillium chrysogenum (P. chrysogenum), a ubiquitous filamentous fungus, has demonstrated remarkable potential in the bioremediation of lead-contaminated environments. Its inherent tolerance and bioaccumulation capacity for lead (Pb), coupled with its relatively rapid growth rate, make it an attractive candidate for bioremediation applications. This study aims to identify the proteomic changes in P. chrysogenuminduced by Pb metal stress and unravel the roles of identified proteins in molecular mechanisms and cellular responses. Untargeted proteomic analysis was carried out using a two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study reported the identification of 43 statistically significant proteins (24 upregulated and 19 downregulated, ANOVA, p ≤ 0.05; fold change ≥1.5) in P. chrysogenum as a consequence of Pb treatment. Proteins were grouped according to their function into 18 groups from which 13 proteins were related to metabolism, 11 were related to cellular process and signaling, and 19 proteins were related to information storage and processing. The current study is considered the first report about the proteomics study of P. chrysogenum under Pb stress conditions, where upregulated proteins could better explain the mechanism of tolerance and Pb toxicity removal. Our research has provided a thorough understanding of the molecular and cellular processes involved in fungal-metal interactions, paving the way for the development of innovative molecular markers for heavy metal myco-remediation. To the best of our knowledge, this study of P. chrysogenum provides valuable insights toward growing research in comprehending the metal-microbe interactions. This will facilitate development of novel molecular markers for metal bioremediation.

12.
PeerJ ; 12: e16708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715984

RESUMO

The present work aimed at differentiating five Amaranthus species from Saudi Arabia according to their morphology and the ability in nanoparticle formulation. Biogenic silver nanoparticles (AgNPs) were synthesized from leaf extracts of the five Amaranthus species and characterized by different techniques. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of Amaranthus species. The nanoparticles (NPs) were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activity of the synthesized NPs was tested against Staphylococcus aureus, E. coli, Klebsiella pneumoniae and Pseudomonas aeruginosa using the agar well diffusion method. Spherical NPs varying in size and functional groups from the five plant species were demonstrated by TEM, DLS and FTIR analysis, respectively. Variations in NPs characteristics could be related to the phytochemical composition of each Amaranthus species since they play a significant role in the reduction process. EDX confirmed the presence of Ag in plant fabricated AgNPs. Antibacterial activity varied among the species, possibly related to the NPs characteristics. Varied characteristics for the obtained AgNPs may reflect variations in the phytochemical composition type and concentration among Amaranthus species used for their fabrication.


Assuntos
Amaranthus , Antibacterianos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Prata , Amaranthus/química , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Folhas de Planta/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Arábia Saudita , Bactérias/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos
13.
Sci Rep ; 14(1): 7202, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531974

RESUMO

Cancer is responsible for approximately 10 million deaths worldwide, with 70% of the deaths occurring in low- and middle-income countries; as such safer and more effective anti-cancer drugs are required. Therefore, the potential benefits of Ziziphus nummularia and Ziziphus spina-christi as sources of anti-cancer agents were investigated. Z. nummularia and Z. spina-christi extracts were prepared using chloroform, ethanol, ethyl acetate, and water. The extracts' anti-cancer properties were determined using the MTT Cell Viability Assay in four cancer cell lines: breast (KAIMRC2 and MDA-MB-231), colorectal (HCT8), and liver (HepG2). The ApoTox-Glo Triplex Assay and high-content imaging (HCI)-Apoptosis Assay were used to assess KAIMRC2 and HCT8 cells further. In addition, KAIMRC2 cells were tested for microtubule staining, and AKT/mTOR protein expression was determined by western blot analysis. Liquid chromatography-mass spectrometry (LC-MS) was performed to identify the secondary metabolites in the ethanol and ethyl acetate extracts, followed by in silico techniques to predict molecular targets and interactions, safety, and pharmacokinetic profile for identified metabolites. Out of the eight extracts, the ethanolic extract of Z. nummularia, exhibited the most potent activity against KAIMRC2 cells with an IC50 value of 29.2 µg/ml. Cancer cell treatment with the ethanolic extract of Z. nummularia resulted in a dose-dependent decrease in cell viability with increased apoptosis and cytotoxic effects. Microtubule staining showed a disrupted microtubular network. The ethanolic extract treatment of KAIMRC2 cells led to upregulated expression of pAKT and pmTOR. In silico studies predicted luteolin-7-O-glucoside to be a ligand for tubulin with the highest docking score (- 7.686) and similar binding interactions relative to the native ligand. Further computational analysis of the metabolites showed acceptable pharmacokinetic and safety profiles, although ethanolic extract metabolites were predicted to have cardiotoxic effects. Ethanolic extraction is optimal for solubilizing active anticancer metabolites from Z. nummularia, which may act by causing M-phase arrest via inhibition of tubulin polymerization. Luteolin-7-O-glucoside is the lead candidate for further research and development as an anti-cancer agent. In addition, this study suggests that herbal treatment could switch on mechanisms of adaptation and survival in cancer cells.


Assuntos
Acetatos , Glucosídeos , Luteolina , Neoplasias , Ziziphus , Extratos Vegetais/farmacologia , Ziziphus/química , Moduladores de Tubulina , Ligantes , Tubulina (Proteína) , Etanol
14.
Int J Biol Macromol ; 252: 126434, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604417

RESUMO

Despite the wide utilization of chitosan nanoparticles (CSNPs) as a promising approach for sustainable agriculture, their efficiency under elevated CO2 (eCO2), has not been evaluated. The interactive effects of CSNPs and eCO2 were evaluated on the growth and C and N metabolism of soybean plants. Plants were treated with CSNPs and grown under ambient CO2 (410 ppm, aCO2) or eCO2 (645 ppm). Regardless of CO2 level, CSNPs improved the net photosynthetic rate. CSNPs aggravated the effect of eCO2 treatment on the levels of non-structural carbohydrates (i.e., glucose, fructose, sucrose, and starch), especially in shoots, which was inconsistence with the upregulation of carbohydrates metabolizing enzymes. Being the most pivotal energetic and signaling organic compounds in higher plants, the synergistic action of CSNPs and eCO2 on the accumulation of soluble sugars upregulated the N metabolism as indicated by induced activities of nitrate reductase, arginase, glutamate dehydrogenase, glutamine synthetase, and glutamine oxoglutarate aminotransferase which was manifested finally as increased shoot and root total nitrogen content as well as proline and aspartate in roots. At the hormonal level, the coexistence of eCO2 with CSNPs further supports their positive impact on the contents of IAA and, to a lesser extent, GAs. The present data prove that the biofertilization capacity of CSNPs is even more potent under futuristic eCO2 levels and could even further improve the growth and resilience of plants.


Assuntos
Quitosana , Nanopartículas , Dióxido de Carbono/metabolismo , Glycine max/metabolismo , Quitosana/farmacologia , Quitosana/metabolismo , Fotossíntese
15.
Biotechnol Genet Eng Rev ; : 1-14, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852923

RESUMO

Microorganisms produce secondary metabolites to survive under stressful conditions. The effect of drought and heat stress on fungi isolated from Arabian desert soil during the hot (ca 40°C) and cool (ca 10°C) seasons was studied using the genome mining approach. The presence of three stress-related genes (calmodulin, polyketide synthase and beta tubulin) was analyzed molecularly using specific primers. The presence of the genes in desert fungi was compared to their antimicrobial (ten bacterial or fungal pathogens) and anticancer (liver, cervical and breast) properties and the production of thermostable enzymes (phytase and xylanase). The genes appeared to be present in the fungal sequence obtained during the summer, while none of the genes were present during winter. Appreciable differences were observed in enzyme activities, with summer activities high and winter low. The antagonistic activities of A. niger were relatively stable and varying, while those of P. chrysogenum were consistently higher in summer than in winter. The presence of the three genes seemed to correlate with the highly antagonistic activities of P. chrysogenum, while A. niger had relatively active winter isolates without any of the genes. The hot season in deserts yields fungal isolates with biological activities useful in biotechnological solutions.

16.
Plant Physiol Biochem ; 205: 108148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977026

RESUMO

Contamination of agricultural fields with bismuth (Bi) reduces crop yield and quality. Arbuscular mycorrhizal fungi (AMF) are known to enhance plant growth and crop production, even under stressful conditions such as soil contamination with heavy metals. The objective of this study was to investigate the effect of AMF on the mitigation of Bi-phytotoxicity in wheat (Triticum aestivum) and beans (Phaseolus vulgaris) and to provide a comprehensive evaluation of the physiological and biochemical basis for the growth and development of AMF-induced plants under Bi stress conditions. Wheat and bean were treated by Bi and AMF individually and in combination. Then the physiological and biochemical responses in the shoot and roots of the two crop species were studied. Evident retardations in plant growth and key photosynthesis-related parameters and accumulation of MDA, H2O2, as markers of oxidative stress, were observed in plants subjected to Bi. AMF colonization reduced the uptake and translocation of Bi in the plant organs by enhancing the exudation of polyphenols and organic acids into the rhizospheric soil. Mycorrhized wheat and bean plants were able to attenuate the effects of Bi by improving metal detoxification (phytochelatins, metallothionein, total glutathione, and glutathione-S-transferase activity) and antioxidant defense systems (both enzymatic and non-enzymatic) and maintaining C assimilation and nutrient status. The current results suggest the manipulation of AMF as a powerful approach to alleviate the phytotoxicity of Bi in legumes and grasses.


Assuntos
Fabaceae , Micorrizas , Poluentes do Solo , Antioxidantes/farmacologia , Triticum , Bismuto/farmacologia , Peróxido de Hidrogênio/farmacologia , Micorrizas/fisiologia , Raízes de Plantas , Glutationa/farmacologia , Solo , Poluentes do Solo/toxicidade
17.
Int J Biol Macromol ; 235: 123806, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36841386

RESUMO

Arbuscular mycorrhizae fungi (AMF) symbiosis is an indispensable approach in sustainable agriculture. AMF-plant association is likely to be enhanced by the nanoparticle's application. Herein, the impact of chitosan nanoparticles (CSNPs) on the mycorrhizal colonization in wheat has been investigated. The provoked changes in wheat growth, physiology and metabolism were assessed. CSNPs treatment improved AMF colonization (52 %) by inducing the levels of auxins and strigolactones in roots by 32 and 21 %, respectively besides flavonoids exudation into the rhizosphere (9 %). Such supporting action of CSNPs was associated with improved plant biomass production (21 %) compared to AMF treatment. Both treatments synergistically enhanced the photochemical efficiency of photosystem II and stomatal conductance, therefore the photosynthetic rate was increased. The combined application of CSNPs and AMF enhanced accumulation of glucose, fructose, sucrose, and starch (12, 22, 31 and 13 %, respectively), as well as the activities of sucrose-p-synthase, invertases and starch synthase compared to AMF treatment. The synchronous application of CSNPs and AMF promoted the levels of polyphenols, carotenoids, and tocopherols therefore, improved antioxidant capacity (33 %), in the roots. CSNPs can be applied as an efficient biofertilization strategies to enhance plant growth and fitness, beside improvement of health promoting compounds in wheat.


Assuntos
Quitosana , Micorrizas , Micorrizas/metabolismo , Triticum/fisiologia , Quitosana/farmacologia , Quitosana/metabolismo , Fungos , Raízes de Plantas , Sacarose/metabolismo , Açúcares/metabolismo
18.
Sci Total Environ ; 873: 162295, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801323

RESUMO

Arsenic (As) is a group-1 carcinogenic metalloid that threatens global food safety and security, primarily via its phytotoxicity in the staple crop rice. In the present study, ThioAC, the co-application of thiourea (TU, a non-physiological redox regulator) and N. lucentensis (Act, an As-detoxifying actinobacteria), was evaluated as a low-cost approach for alleviating As(III) toxicity in rice. To this end, we phenotyped rice seedlings subjected to 400 mg kg-1 As(III) with/without TU, Act or ThioAC and analyzed their redox status. Under As-stress conditions, ThioAC treatment stabilized photosynthetic performance, as indicated by 78 % higher total chlorophyll accumulation and 81 % higher leaf biomass, compared with those of As-stressed plants. Further, ThioAC improved root lignin levels (2.08-fold) by activating the key enzymes of lignin biosynthesis under As-stress. The extent of reduction in total As under ThioAC (36 %) was significantly higher than TU (26 %) and Act (12 %), compared to those of As-alone treatment, indicating their synergistic interaction. The supplementation of TU and Act activated enzymatic and non-enzymatic antioxidant systems, respectively, with a preference for young (TU) and old (Act) leaves. Additionally, ThioAC activated enzymatic antioxidants, specifically GR (∼3-fold), in a leaf-age specific manner and suppressed ROS-producing enzymes to near-control levels. This coincided with 2-fold higher induction of polyphenols and metallothionins in ThioAC-supplemented plants, resulting in improved antioxidant defence against As-stress. Thus, our findings highlighted ThioAC application as a robust, cost-effective ameliorative strategy, for achieving As-stress mitigation in a sustainable manner.


Assuntos
Arsênio , Oryza , Antioxidantes/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Oryza/metabolismo , Lignina/metabolismo , Tioureia/metabolismo , Tioureia/farmacologia , Estresse Oxidativo , Plantas/metabolismo , Plântula/metabolismo
19.
Front Plant Sci ; 14: 1019859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959941

RESUMO

Rice is a highly valuable crop consumed all over the world. Soil pollution, more specifically chromium (Cr), decreases rice yield and quality. Future climate CO2 (eCO2) is known to affect the growth and yield of crops as well as the quality parameters associated with human health. However, the detailed physiological and biochemical responses induced by Cr in rice grains produced under eCO2 have not been deeply studied. Cr (200 and 400 mg Cr6+/Kg soil) inhibited rice yield and photosynthesis in Sakha 106, but to less extend in Giza 181 rice cultivar. Elevated CO2 reduced Cr accumulation and, consequently, recovered the negative impact of the higher Cr dose, mainly in Sakha 106. This could be explained by improved photosynthesis which was consistent with increased carbohydrate level and metabolism (starch synthases and amylase). Moreover, these increases provided a route for the biosynthesis of organic, amino and fatty acids. At grain quality level, eCO2 differentially mitigated Cr stress-induced reductions in minerals (e.g., P, Mg and Ca), proteins (prolamin, globulin, albumin, glutelin), unsaturated fatty acids (e.g., C20:2 and C24:1) and antioxidants (phenolics and total antioxidant capacity) in both cultivars. This study provided insights into the physiological and biochemical bases of eCO2-induced grain yield and quality of Cr-stressed rice.

20.
ACS Omega ; 8(14): 12980-12991, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065043

RESUMO

The increasing trend in the rise of antibiotic-resistant bacteria pushes research to discover new efficacious antibacterial agents from natural and synthetic sources. Porphyromonas gingivalis is a well-known bacterium commonly known for causing periodontal disease, and it is associated with the pathogenesis of life-changing systemic conditions such as Alzheimer's. Proteomic research can be utilized to test new antibacterial drugs and understand the adaptive resistive mechanisms of bacteria; hence, it is important in the drug discovery process. The current study focuses on identifying the antibacterial effects of Juglans regia (JR) and Melaleuca alternifolia (MA) on P. gingivalis and uses proteomics to identify modes of action while exploring its adaptive mechanisms. JR and MA extracts were tested for antibacterial efficacy using the agar well diffusion assay. A proteomic study was conducted identifying upregulated and downregulated proteins compared to control by 2D-DIGE analysis, and proteins were identified using MADLI-TOF/MS. The bacterial inhibition for JR was 20.14 ± 0.2, and that for MA was 19.72 ± 0.5 mm. Out of 88 differentially expressed proteins, there were 17 common differentially expressed proteins: 10 were upregulated and 7 were downregulated in both treatments. Among the upregulated proteins were Arginine-tRNA ligase, ATP-dependent Clp protease proteolytic, and flavodoxins. In contrast, down-regulated proteins were ATP synthase subunit alpha and quinone, among others, which are known antibacterial targets. STRING analysis indicated a strong network of interactions between differentially expressed proteins, mainly involved in protein translation, post-translational modification, energy production, metabolic pathways, and protein repair and degradation. Both extracts were equi-efficacious at inhibiting P. gingivalis and displayed some overlapping proteomic profiles. However, the MR extract had a greater fold change in its profile than the JA extract. Downregulated proteins indicated similarity in the mode of action, and upregulated proteins appear to be related to adaptive mechanisms important in promoting repair, growth, survival, virulence, and resistance. Hence, both extracts may be useful in preventing P. gingivalis-associated conditions. Furthermore, our results may be helpful to researchers in identifying new antibiotics which may offset these mechanisms of resistance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa