Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(3): 034501, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681635

RESUMO

Graphene nanoslit pores are used for nanofluidic devices, such as, in water desalination, ion-selective channels, ionic transistors, sensing, molecular sieving, blue energy harvesting, and protein sequencing. It is a strenuous task to prepare nanofluidic devices, because a small misalignment leads to a significant alteration in various properties of the devices. Here, we focus on the rotational misalignment between two parallel graphene sheets. Using molecular dynamics simulation, we probe the structure and dynamics of monolayer water confined inside graphene nanochannels for a range of commensurate twist angles. With SPC/E and TIP4P/2005 water models, our simulations reveal the independence of the equilibrium number density- n ∼ 13 nm-2 for SPC/E and n ∼ 11.5 nm-2 for TIP4P/2005- across twists. Based on the respective densities of the water models, the structure and dielectric constant are invariant of twist angles. The confined water structure at this density shows square ice ordering for SPC/E water only. TIP4P/2005 shows ordering at the vicinity of a critical density (n ∼ 12.5 nm-2). The average perpendicular dielectric constant of the confined water remains anomalously low (∼2 for SPC/E and ∼6 for TIP4P/2005) for the studied twist angles. We find that the friction coefficient of confined water molecules varies for small twist angles, while becoming independent for twists greater than 5.1°. Our results indicate that a small, angular misalignment will not impair the dielectric properties of monolayer water within a graphene slit-pore, but can significantly influence its dynamics.


Assuntos
Grafite , Sequência de Aminoácidos , Fricção , Simulação de Dinâmica Molecular , Água
2.
Phys Chem Chem Phys ; 24(18): 11196-11205, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481472

RESUMO

Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [Science363, 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic water permeability from the equilibrium simulation data and find that it is very high for the PNT membrane. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting.

3.
J Chem Phys ; 156(1): 014503, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998317

RESUMO

A recent study introduced a novel mean-field model system where each particle over and above the interaction with its regular neighbors interacts with k extra pseudo-neighbors. Here, we present an extensive study of thermodynamics and its correlation with the dynamics of this system. We surprisingly find that the well-known thermodynamic integration (TI) method of calculating the entropy provides unphysical results. It predicts vanishing of the configurational entropy at temperatures close to the onset temperature of the system and negative values of the configurational entropy at lower temperatures. Interestingly, well below the temperature at which the configurational entropy vanishes, both the collective and the single-particle dynamics of the system show complete relaxation. Negative values of the configurational entropy are unphysical, and complete relaxation when the configurational entropy is zero violates the prediction of the random first-order transition theory (RFOT). However, the entropy calculated using the two-phase thermodynamics (2PT) method remains positive at all temperatures for which we can equilibrate the system, and its values are consistent with RFOT predictions. We find that with an increase in k, the difference in the entropy computed using the two methods increases. A similar effect is also observed for a system where a randomly selected fraction of the particles are pinned in their positions in the equilibrated liquid. We show that the difference in entropy calculated via the 2PT and TI methods increases with pinning density.

4.
J Chem Phys ; 154(16): 164510, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33940812

RESUMO

The Kauzmann temperature (TK) of a supercooled liquid is defined as the temperature at which the liquid entropy becomes equal to that of the crystal. The excess entropy, the difference between liquid and crystal entropies, is routinely used as a measure of the configurational entropy, whose vanishing signals the thermodynamic glass transition. The existence of the thermodynamic glass transition is a widely studied subject, and of particular recent interest is the role of dimensionality in determining the presence of a glass transition at a finite temperature. The glass transition in water has been investigated intensely and is challenging as the experimental glass transition appears to occur at a temperature where the metastable liquid is strongly prone to crystallization and is not stable. To understand the dimensionality dependence of the Kauzmann temperature in water, we study computationally bulk water (three-dimensions), water confined in the slit pore of the graphene sheet (two-dimensions), and water confined in the pore of the carbon nanotube of chirality (11,11) having a diameter of 14.9 Å (one-dimension), which is the lowest diameter where amorphous water does not always crystallize into nanotube ice in the supercooled region. Using molecular dynamics simulations, we compute the entropy of water in bulk and under reduced dimensional nanoscale confinement to investigate the variation of the Kauzmann temperature with dimension. We obtain a value of TK (133 K) for bulk water in good agreement with experiments [136 K (C. A. Angell, Science 319, 582-587 (2008) and K. Amann-Winkel et al., Proc. Natl. Acad. Sci. U. S. A. 110, 17720-17725 (2013)]. However, for confined water, in two-dimensions and one-dimension, we find that there is no finite temperature Kauzmann point (in other words, the Kauzmann temperature is 0 K). Analysis of the fluidicity factor, a measure of anharmonicity in the oscillation of normal modes, reveals that the Kauzmann temperature can also be computed from the difference in the fluidicity factor between amorphous and ice phases.

5.
J Phys Chem Lett ; 13(2): 455-461, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34995445

RESUMO

The proton dynamics of a 2D water monolayer confined inside a graphene slit pore is studied in Cartesian and molecular frames of reference using molecular dynamics simulations. The vibrational density of states of the proton was calculated versus temperature and was further used to deduce the mean kinetic energy of the hydrogen atoms, Ke(H), in both frames of reference. The directional components of Ke(H) are in good agreement with experimental observations for bulk as well as nanoconfined water. Nonetheless, while in the molecular frame of reference the effect of temperature on the anisotropy ratios of Ke(H) (the ratio between its directional components) are practically invariant between the 2D and 3D cases, those in the Cartesian frame of reference reveal a rather notable reduction across 200 K, indicating the occurrence of an order-disorder transition. This result is further supported by the calculated entropy and enthalpy of the confined water molecules. Overall, it is shown that Ke(H) anisotropy ratios may serve as a valuable order parameter for detecting structural transformations in hydrogen bonds containing molecular systems.

6.
J Phys Chem B ; 125(24): 6670-6680, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34107687

RESUMO

A monolayer of water confined between two parallel graphene sheets exists in many different phases and exhibits fascinating dielectric properties that have been studied in experiments. In this work, we use molecular dynamics simulations to study how the dielectric properties of a confined monolayer of water is affected by its structure. We consider six of the popular nonpolarizable water models-SPC/E, SPC/Fw, TIP3P, TIP3P_M (modified), TIP4P-2005, and TIP4P-2005f-and find that the in-plane structure of the water molecules at ambient temperature and pressure is strongly dependent on the water model: all the 3-point water models considered here show square ice formation, whereas no such structural ordering is observed for the 4-point water models. This allows us to investigate the role of the in-plane structure of the water monolayer on its dielectric profile. Our simulations show an anomalous perpendicular dielectric constant compared to the bulk, and the models that do not exhibit ice formation show very different dielectric response along the channel width compared to models that exhibit square ice formation. We also demonstrate the occurrence of electromelting of the in-plane ordered water under the application of a perpendicular electric field and find that the critical field for electromelting strongly depends on the water model. Together, we have shown the dependence of confined water properties on the different water structures that it may take when sandwiched between bilayer graphene. These remarkable properties of confined water can be exploited in various nanofluidic devices, artificial ion channels, and molecular sieving.


Assuntos
Grafite , Água , Eletricidade , Simulação de Dinâmica Molecular
7.
J Phys Chem B ; 124(1): 190-198, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31804825

RESUMO

The reported anomalies of the proton mean kinetic energy, Ke(H), in nanoconfined water, as measured by deep inelastic neutron scattering (DINS), constitute a longstanding problem related to proton dynamics in hydrogen-bonded systems. A considerable number of theoretical attempts to explain these anomalies have failed. The mean vibrational density of states (VDOS) of protons in water nanoconfined inside single wall carbon nanotubes (SWCNTs) is calculated as a function of temperature and SWCNT diameter, DCNT, by classical molecular dynamics (MD) simulation using the TIP4P-2005f water model. The calculated VDOS are utilized for deducing the mean kinetic energy of the water protons, Ke(H), by treating each phonon state as a harmonic oscillator. The calculation depicts a strong confinement effect as reflected in the drop of the value of Ke(H) at 5 K for DCNT < ∼12 Å, while absent for larger diameters. The results also reveal very significant blue and red shifts of the stretching and bending modes, respectively, compared to those in bulk ice, in agreement with experiment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa