Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074874

RESUMO

For nearly 50 years, the vision of using single molecules in circuits has been seen as providing the ultimate miniaturization of electronic chips. An advanced example of such a molecular electronics chip is presented here, with the important distinction that the molecular circuit elements play the role of general-purpose single-molecule sensors. The device consists of a semiconductor chip with a scalable array architecture. Each array element contains a synthetic molecular wire assembled to span nanoelectrodes in a current monitoring circuit. A central conjugation site is used to attach a single probe molecule that defines the target of the sensor. The chip digitizes the resulting picoamp-scale current-versus-time readout from each sensor element of the array at a rate of 1,000 frames per second. This provides detailed electrical signatures of the single-molecule interactions between the probe and targets present in a solution-phase test sample. This platform is used to measure the interaction kinetics of single molecules, without the use of labels, in a massively parallel fashion. To demonstrate broad applicability, examples are shown for probe molecule binding, including DNA oligos, aptamers, antibodies, and antigens, and the activity of enzymes relevant to diagnostics and sequencing, including a CRISPR/Cas enzyme binding a target DNA, and a DNA polymerase enzyme incorporating nucleotides as it copies a DNA template. All of these applications are accomplished with high sensitivity and resolution, on a manufacturable, scalable, all-electronic semiconductor chip device, thereby bringing the power of modern chips to these diverse areas of biosensing.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrônica/instrumentação , Ensaios Enzimáticos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , DNA , Desenho de Equipamento/instrumentação , Cinética , Dispositivos Lab-On-A-Chip , Miniaturização/instrumentação , Nanotecnologia/instrumentação , Semicondutores
2.
IEEE Trans Biomed Circuits Syst ; 16(6): 1030-1043, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191107

RESUMO

This work reports the first CMOS molecular electronics chip. It is configured as a biosensor, where the primary sensing element is a single molecule "molecular wire" consisting of a ∼100 GΩ, 25 nm long alpha-helical peptide integrated into a current monitoring circuit. The engineered peptide contains a central conjugation site for attachment of various probe molecules, such as DNA, proteins, enzymes, or antibodies, which program the biosensor to detect interactions with a specific target molecule. The current through the molecular wire under a dc applied voltage is monitored with millisecond temporal resolution. The detected signals are millisecond-scale, picoampere current pulses generated by each transient probe-target molecular interaction. Implemented in a 0.18 µm CMOS technology, 16k sensors are arrayed with a 20 µm pitch and read out at a 1 kHz frame rate. The resulting biosensor chip provides direct, real-time observation of the single-molecule interaction kinetics, unlike classical biosensors that measure ensemble averages of such events. This molecular electronics chip provides a platform for putting molecular biosensing "on-chip" to bring the power of semiconductor chips to diverse applications in biological research, diagnostics, sequencing, proteomics, drug discovery, and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Eletrônica , Análise de Sequência com Séries de Oligonucleotídeos , Semicondutores , DNA/química , Nanotecnologia , Técnicas Biossensoriais/métodos
3.
Cell Signal ; 15(7): 709-18, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12742231

RESUMO

Cells undergo M phase arrest in response to stresses like UV irradiation or DNA damage. Stress-activated protein kinase (SAPK, also known as c-Jun N-terminal kinase, JNK) is activated by such stress stimuli. We addressed the potential effects of SAPK activation on cell cycle regulatory proteins. Activation of SAPK strongly correlated with inhibition of cdc2/cyclin B kinase, an important regulator of G2/M phase. SAPK directly phosphorylated the cdc2 regulator, cdc25c, in vitro on serine 168 (S168). This residue was highly phosphorylated in vivo in response to stress stimuli. cdc25c phosphorylated on S168 in cells lacks phosphatase activity, and expression of a S168A mutant of cdc25c reversed the inhibition of cdc2/cyclin B kinase activity by cell stress. Antibodies directed against phosphorylated S168 detect increased phosphorylation of S168 after cell stress. We conclude that SAPK regulates cdc2/cyclin B kinase following stress events by a novel mechanism involving inhibitory phosphorylation of the cdc2-activating phosphatase cdc25c on S168.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Fisiológico/enzimologia , Fosfatases cdc25/metabolismo , Sequência de Aminoácidos/efeitos dos fármacos , Sequência de Aminoácidos/fisiologia , Anticorpos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Fase G2/efeitos dos fármacos , Fase G2/fisiologia , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Mitose/efeitos dos fármacos , Mitose/fisiologia , Fosforilação/efeitos dos fármacos , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fosfatases cdc25/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa