Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(9): e22512, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36001064

RESUMO

The kinase IKKß controls pro-inflammatory gene expression, and its activity in the liver and leukocytes was shown to drive metabolic inflammation and insulin resistance in obesity. However, it was also proposed that liver IKKß signaling protects obese mice from insulin resistance and endoplasmic reticulum (ER) stress by increasing XBP1s protein stability. Furthermore, mice lacking IKKß in leukocytes display increased lethality to lipopolysaccharides. This study aims at improving our understanding of the role of IKKß signaling in obesity. We induced IKKß deletion in hematopoietic cells and liver of obese mice by Cre-LoxP recombination, using an INF-inducible system, or a liver-specific IKKß deletion in obese mice by adenovirus delivery of the Cre recombinase. The histopathological, immune, and metabolic phenotype of the mice was characterized. IKKß deletion in the liver and hematopoietic cells was not tolerated in mice with established obesity exposed to the TLR3 agonist poly(I:C) and exacerbated liver damage and ER-stress despite elevated XBP1s. By contrast, liver-specific ablation of IKKß in obese mice reduced steatosis and improved insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of de-novo lipogenesis genes. We conclude that IKKß blockage in liver and leukocytes is not tolerated in obese mice exposed to TLR3 agonists. However, selective hepatic IKKß ablation improves fatty liver and insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of lipogenic genes.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Fígado Gorduroso/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Leucócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Receptor 3 Toll-Like/metabolismo
2.
Cell Rep ; 43(5): 114132, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656871

RESUMO

Insulin-PI3K signaling controls insulin secretion. Understanding this feedback mechanism is crucial for comprehending how insulin functions. However, the role of adipocyte insulin-PI3K signaling in controlling insulin secretion in vivo remains unclear. Using adipocyte-specific PI3Kα knockout mice (PI3KαAdQ) and a panel of isoform-selective PI3K inhibitors, we show that PI3Kα and PI3Kß activities are functionally redundant in adipocyte insulin signaling. PI3Kß-selective inhibitors have no effect on adipocyte AKT phosphorylation in control mice but blunt it in adipocytes of PI3KαAdQ mice, demonstrating adipocyte-selective pharmacological PI3K inhibition in the latter. Acute adipocyte-selective PI3K inhibition increases serum free fatty acid (FFA) and potently induces insulin secretion. We name this phenomenon the adipoincretin effect. The adipoincretin effect operates in fasted mice with increasing FFA and decreasing glycemia, indicating that it is not primarily a control system for blood glucose. This feedback control system defines the rates of adipose tissue lipolysis and chiefly controls basal insulin secretion during fasting.


Assuntos
Adipócitos , Jejum , Secreção de Insulina , Insulina , Camundongos Knockout , Fosfatidilinositol 3-Quinases , Animais , Adipócitos/metabolismo , Insulina/metabolismo , Camundongos , Jejum/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/sangue , Lipólise , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
3.
Nat Neurosci ; 27(4): 629-642, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472649

RESUMO

The formation of mammalian synapses entails the precise alignment of presynaptic release sites with postsynaptic receptors but how nascent cell-cell contacts translate into assembly of presynaptic specializations remains unclear. Guided by pioneering work in invertebrates, we hypothesized that in mammalian synapses, liprin-α proteins directly link trans-synaptic initial contacts to downstream steps. Here we show that, in human neurons lacking all four liprin-α isoforms, nascent synaptic contacts are formed but recruitment of active zone components and accumulation of synaptic vesicles is blocked, resulting in 'empty' boutons and loss of synaptic transmission. Interactions with presynaptic cell adhesion molecules of either the LAR-RPTP family or neurexins via CASK are required to localize liprin-α to nascent synaptic sites. Liprin-α subsequently recruits presynaptic components via a direct interaction with ELKS proteins. Thus, assembly of human presynaptic terminals is governed by a hierarchical sequence of events in which the recruitment of liprin-α proteins by presynaptic cell adhesion molecules is a critical initial step.


Assuntos
Sinapses , Transmissão Sináptica , Animais , Humanos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Neurônios/fisiologia , Proteínas de Transporte/metabolismo , Terminações Pré-Sinápticas/metabolismo , Moléculas de Adesão Celular , Mamíferos/metabolismo
4.
Eur J Hum Genet ; 31(8): 887-894, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36935417

RESUMO

Ribonuclease inhibitor 1, also known as angiogenin inhibitor 1, encoded by RNH1, is a ubiquitously expressed leucine-rich repeat protein, which is highly conserved in mammalian species. Inactivation of rnh1 in mice causes an embryonically lethal anemia, but the exact biological function of RNH1 in humans remains unknown and no human genetic disease has so far been associated with RNH1. Here, we describe a family with two out of seven siblings affected by a disease characterized by congenital cataract, global developmental delay, myopathy and psychomotor deterioration, seizures and periodic anemia associated with upper respiratory tract infections. A homozygous splice-site variant (c.615-2A > C) in RNH1 segregated with the disease. Sequencing of RNA derived from patient fibroblasts and cDNA analysis of skeletal muscle mRNA showed aberrant splicing with skipping of exon 7. Western blot analysis revealed a total lack of the RNH1 protein. Functional analysis revealed that patient fibroblasts were more sensitive to RNase A exposure, and this phenotype was reversed by transduction with a lentivirus expressing RNH1 to complement patient cells. Our results demonstrate that loss-of-function of RNH1 in humans is associated with a multiorgan developmental disease with recessive inheritance. It may be speculated that the infection-induced deterioration resulted from an increased susceptibility toward extracellular RNases and/or other inflammatory responses normally kept in place by the RNase inhibitor RNH1.


Assuntos
Anemia , Catarata , Humanos , Camundongos , Animais , Ribonucleases/metabolismo , Proteínas de Transporte/genética , Fatores de Transcrição/metabolismo , Anemia/genética , Catarata/genética , Mamíferos/metabolismo
5.
Sci Rep ; 10(1): 12031, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694512

RESUMO

Hepatoma cell lines are widely used to model the hepatocyte for insulin signaling and fatty liver disease. However, a direct comparison of insulin action in primary hepatocytes and in hepatoma cell lines is needed to validate this model and to better understand liver cancer. Here we have investigated insulin signaling, gluconeogenic gene expression, glucose production, and fatty acid synthase abundance in primary hepatocytes and in HepG2, Hepa 1-6, and McARH7777 hepatoma cell lines. Differences in the electrophoretic profiles of protein extracts from human and mouse primary hepatocytes and the hepatoma cells lines are shown. Compared to primary hepatocytes, hepatoma cells showed high basal phosphorylation of AKT at Thr 308 and constitutively activated RAS-MAPK signaling, which were resistant to the dominant negative Ras mutant H-Ras17N. Hepatoma cell lines also showed defective expression of gluconeogenic enzymes, insulin unresponsive GSK phosphorylation, and marginal glucose production. Hepatoma cells also showed lower protein levels of fatty acid synthase and a largely distinct protein electrophoresis profile from hepatocytes but similar between different hepatoma lines. We conclude that hepatoma cell lines do not accurately model the hepatocyte for insulin action but may be valuable tools to investigate the proteomic changes conferring to hepatocellular carcinoma its peculiar metabolisms.


Assuntos
Glucose/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Fenótipo , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
6.
Cell Metab ; 29(6): 1400-1409.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30982732

RESUMO

Phosphatidylinositol-3-kinase (PI3K) activity is aberrant in tumors, and PI3K inhibitors are investigated as cancer therapeutics. PI3K signaling mediates insulin action in metabolism, but the role of PI3K isoforms in insulin signaling remains unresolved. Defining the role of PI3K isoforms in insulin signaling is necessary for a mechanistic understanding of insulin action and to develop PI3K inhibitors with optimal therapeutic index. We show that insulin-driven PI3K-AKT signaling depends on redundant PI3Kα and PI3Kß activities, whereas PI3Kδ and PI3Kγ are largely dispensable. We have also found that RAS activity promotes AKT phosphorylation in insulin-stimulated hepatocytes and that promotion of insulin-driven AKT phosphorylation by RAS depends on PI3Kα. These findings reveal the detailed mechanism by which insulin activates AKT, providing an improved mechanistic understanding of insulin signaling. This improved model for insulin signaling predicts that isoform-selective PI3K inhibitors discriminating between PI3Kα and PI3Kß should be dosed below their hyperglycemic threshold to achieve isoform selectivity.


Assuntos
Hepatócitos/metabolismo , Insulina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas ras/fisiologia , Animais , Células Cultivadas , Células HEK293 , Hepatócitos/efeitos dos fármacos , Humanos , Insulina/metabolismo , Insulina/farmacologia , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas ras/genética
7.
Sci Signal ; 10(488)2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720716

RESUMO

The phosphoinositide 3-kinase γ (PI3Kγ) plays a major role in leukocyte recruitment during acute inflammation and has been proposed to inhibit classical macrophage activation by driving immunosuppressive gene expression. PI3Kγ plays an important role in diet-induced obesity and insulin resistance. In seeking to determine the underlying molecular mechanisms, we showed that PI3Kγ action in high-fat diet-induced inflammation and insulin resistance depended largely on its role in the control of adiposity, which was due to PI3Kγ activity in a nonhematopoietic cell type. However, PI3Kγ activity in leukocytes was required for efficient neutrophil recruitment to adipose tissue. Neutrophil recruitment was correlated with proinflammatory gene expression in macrophages in adipose tissue, which triggered insulin resistance early during the development of obesity. Our data challenge the concept that PI3Kγ is a general suppressor of classical macrophage activation and indicate that PI3Kγ controls macrophage gene expression by non-cell-autonomous mechanisms, the outcome of which is context-dependent.


Assuntos
Tecido Adiposo/patologia , Classe Ib de Fosfatidilinositol 3-Quinase/fisiologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/prevenção & controle , Resistência à Insulina , Leucócitos/enzimologia , Obesidade/complicações , Animais , Perfilação da Expressão Gênica , Inflamação/etiologia , Leucócitos/patologia , Metabolismo dos Lipídeos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa