RESUMO
Conventional Wilkinson power dividers (WPDs) perform satisfactorily near the intended operation frequency. Nonetheless, these WPDs demonstrate subpar performance in the stopband and necessitate a significant physical space. To enhance the existing level of advancement and in order to improve on the current state-of-the-art, a modified WPD is designed and fabricated, demonstrating a significant improvement in stopband and superior isolation between output ports. To improve the stopband and suppress unwanted harmonics, a low-pass filter (LPF) structure is placed in the both branches of the conventional WPD. The proposed modified WPD depicts a wide stopband bandwidth (fSB > 17.25 GHz) from 2.75 to over 20 GHz with an attenuation level of 20 dB, suppressing 2nd to 11th harmonics. According to measured results, the input return loss (|S11|), insertion loss (|S21|) and output isolation (|S32|) at f = 1.8 GHz are better than 33 dB, 3.2 dB and 21 dB, respectively. Indeed, the proposed modified WPD exhibits a magnitude imbalance of 0.00018, a phase imbalance of 1.25 degrees and a group delay of 0.5 ns. The proposed WPD depicts a compact size of 35 mm × 25 mm (0.38 λg × 0.27 λg), where λg is the guided wavelength at f = 1.8 GHz. There is a good agreement between the simulated and measured results. According to the obtained results, the proposed modified WPD shows a desirable performance for modern LTE and GSM communication applications.
RESUMO
Conventional Wilkinson power dividers (WPDs) can provide acceptable performance close to the nominal center frequency. However, these WPDs can also exhibit poor out-of-band performance while requiring a large footprint. In order to improve on the current state of the art, a modified microstrip WPD is proposed that exhibits a substantially improved stopband and high isolation. A lowpass filter (LPF) structure is utilized in both branches of the power divider to provide harmonic suppression. According to the obtained results, the input return loss (|S11|), output return loss (|S22|), output insertion loss (|S21|) and isolation (|S32|) are better than 34.2 dB, 26.2 dB, 3.52 dB and 31.2 dB, respectively. The proposed modified WPD has a wide 20 dB stopband (from 2.54 GHz to 13.48 GHz) and filters the second to seventh harmonics with attenuation levels of greater than 20 dB. The proposed WPD has a small size of 33.8 mm × 27 mm (0.42 λg × 0.33 λg), where λg is the guided wavelength at the operating frequency of 1.8 GHz. The WPD has been fabricated and tested and shows good agreement between simulated and measured results and the proposed design has desirable characteristics for LTE and GSM applications.
RESUMO
This paper proposes a three-dimensional metamaterial absorber based on a resistive film patch array to develop a low-cost, lightweight absorber for curved surfaces. An excellent absorption over a large frequency band is achieved through two different yet controllable mechanisms; in the first mechanism, a considerable attenuation in the wave power is achieved via graphite resistive films. The absorption is then intensified through magnetic dipoles created by the surface currents, leading to absorption peaks. The simulation results of the absorber show that a broadband absorption greater than 85% is achieved over 35-400 GHz for both TE and TM polarization waves at normal incidence. The structure has more than 167% and 80% absorption bandwidth above 85% and 90%, respectively. It is shown that the proposed metamaterial absorber is independent of incident wave polarization. In addition, the structure is insensitive to incident angles up to 60° for TE mode and full range angle 90° for TM mode. To describe the physical mechanism of the absorber, E-field, power loss density and surface current distributions on the structure are calculated and shown. Moreover, the oblique incidence absorption efficiency is also explained. This absorber paves the way for practical applications, such as sensing, imaging and stealth technology. In addition, the proposed structure can be extended to terahertz, infrared and optical regions.