Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(24): 5308-5327.e25, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922900

RESUMO

Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.


Assuntos
Oócitos , Proteínas , Gravidez , Animais , Feminino , Oócitos/metabolismo , Proteínas/metabolismo , Embrião de Mamíferos/metabolismo , Citoesqueleto , Ribossomos , Desenvolvimento Embrionário , Mamíferos
2.
J Obstet Gynaecol Res ; 48(10): 2571-2582, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35775609

RESUMO

AIM: Unexplained infertility is a major burden for couples who want to have children. Lymphocyte immunotherapy (LIT) could be a therapeutic help for these couples. Although LIT has been carried out for decades, the data on the success of therapy are still controversial and there is hardly information on possible adverse drug reactions. METHODS: In this study, we used a questionnaire to determine the frequency of local and systemic adverse drug reactions in our patients who were treated with LIT between 2017 and 2020 (n = 302). In addition, we asked about pregnancies and/or live births after LIT in a 2-year follow-up (n = 140). RESULTS: Most of the patients reported the occurrence of mild local adverse drug reactions in a period of less than 4 weeks: Over 75% reported moderate erythema, itching or swelling, over 10% erythema, itching or swelling as more pronounced adverse drug reaction. Blistering was specified in 10% of the cases. Serious adverse drug reactions or adverse events were not described. In the follow-up, 69% of our patients stated a pregnancy after LIT, and 50% a life birth. CONCLUSIONS: Overall, LIT represents a well-tolerated therapy for couples with unexplained infertility, however, more evidence is needed on the benefits.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Infertilidade , Criança , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/terapia , Feminino , Humanos , Imunoterapia/efeitos adversos , Infertilidade/terapia , Nascido Vivo , Linfócitos , Gravidez , Taxa de Gravidez , Prurido , Estudos Retrospectivos
3.
Science ; 375(6581): eabj3944, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143306

RESUMO

Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinesinas/deficiência , Oócitos/fisiologia , Oócitos/ultraestrutura , Fuso Acromático/fisiologia , Polos do Fuso/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Bovinos , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Feminino , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Proteínas Recombinantes/metabolismo , Fuso Acromático/ultraestrutura , Polos do Fuso/ultraestrutura , Suínos
4.
Curr Biol ; 29(22): 3749-3765.e7, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31679939

RESUMO

Chromosome segregation errors during female meiosis are a leading cause of pregnancy loss and human infertility. The segregation of chromosomes is driven by interactions between spindle microtubules and kinetochores. Kinetochores in mammalian oocytes are subjected to special challenges: they need to withstand microtubule pulling forces over multiple hours and are built on centromeric chromatin that in humans is decades old. In meiosis I, sister kinetochores are paired and oriented toward the same spindle pole. It is well established that they progressively separate from each other with advancing female age. However, whether aging also affects the internal architecture of centromeres and kinetochores is currently unclear. Here, we used super-resolution microscopy to study meiotic centromere and kinetochore organization in metaphase-II-arrested eggs from three mammalian species, including humans. We found that centromeric chromatin decompacts with advancing maternal age. Kinetochores built on decompacted centromeres frequently lost their integrity and fragmented into multiple lobes. Fragmentation extended across inner and outer kinetochore regions and affected over 30% of metaphase-II-arrested (MII) kinetochores in aged women and mice, making the lobular architecture a prominent feature of the female meiotic kinetochore. We demonstrate that a partial cohesin loss, as is known to occur in oocytes with advancing maternal age, is sufficient to trigger centromere decompaction and kinetochore fragmentation. Microtubule pulling forces further enhanced the fragmentation and shaped the arrangement of kinetochore lobes. Fragmented kinetochores were frequently abnormally attached to spindle microtubules, suggesting that kinetochore fragmentation could contribute to the maternal age effect in mammalian eggs.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Cinetocoros/metabolismo , Oócitos/metabolismo , Envelhecimento , Animais , Proteínas de Ciclo Celular/metabolismo , Centrômero/fisiologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Feminino , Células HEK293 , Humanos , Cinetocoros/fisiologia , Meiose/fisiologia , Camundongos , Microtúbulos/metabolismo , Células NIH 3T3 , Oócitos/fisiologia , Óvulo/metabolismo , Óvulo/fisiologia , Fuso Acromático/fisiologia , Suínos , Coesinas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa