Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Bioessays ; 45(6): e2300026, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042115

RESUMO

Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.


Assuntos
Metabolismo Basal , Animais , Humanos , Fenótipo
2.
Proc Biol Sci ; 291(2029): 20241536, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39191283

RESUMO

Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.


Assuntos
Anfíbios , Metamorfose Biológica , Estresse Oxidativo , Animais , Anfíbios/crescimento & desenvolvimento , Anfíbios/metabolismo , Antioxidantes/metabolismo , Poluentes Ambientais/toxicidade , Poluição Ambiental/efeitos adversos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
3.
Horm Behav ; 162: 105508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513527

RESUMO

Social environments modulate endocrine function, yet it is unclear whether individuals can become like their social partners in how they physiologically respond to stressors. This social transmission of hypothalamic-pituitary-adrenal (HPA) axis reactivity could have long-term consequences for health and lifespan of individuals if their social partners react to stressors with an exaggerated HPA axis response. We tested whether glucocorticoid levels in response to stress of breeding partners changes after breeding depending on whether partners had similar or dissimilar postnatal conditions. We manipulated postnatal conditions by mimicking early life stress in zebra finch chicks (Taeniopygia guttata) via postnatal corticosterone exposure. When they reached adulthood, we created breeding pairs where the female and male had experienced either the same or different early life hormonal treatment (corticosterone or control). Before and after breeding, we obtained blood samples within 3 min and after 10 min or 30 min of restraint stress (baseline, cort10, cort30). We found that corticosterone levels of individuals in response to restraint were affected by their own and their partner's early life conditions, but did not change after breeding. However, across all pairs, partners became more similar in cort30 levels after breeding, although differences between partners in cort10 remained greater in pairs with a corticosterone-treated female. Thus, we show that HPA axis response to stressors in adulthood can be modulated by reproductive partners and that similarity between partners is reduced when females are postnatally exposed to elevated glucocorticoids.


Assuntos
Corticosterona , Tentilhões , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Estresse Psicológico , Animais , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Feminino , Sistema Hipófise-Suprarrenal/fisiologia , Sistema Hipófise-Suprarrenal/metabolismo , Masculino , Corticosterona/sangue , Estresse Psicológico/metabolismo , Estresse Psicológico/sangue , Tentilhões/fisiologia , Reprodução/fisiologia , Restrição Física/fisiologia
4.
Biogerontology ; 25(2): 301-311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252370

RESUMO

This perspectives paper considers the value of studying telomere biology outside of a biomedical context. I provide illustrative examples of the kinds of questions that evolutionary ecologists have addressed in studies of telomere dynamics in non-model species, primarily metazoan animals, and what this can contribute to our understanding of their evolution, life histories and health. I also discuss why the predicted relationships between telomere dynamics and life history traits, based on the detailed cellular studies in humans and model organisms, are not always found in studies in other species.


Assuntos
Evolução Biológica , Telômero , Animais , Humanos
5.
Proc Biol Sci ; 290(1992): 20222448, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750187

RESUMO

Telomere attrition is considered a useful indicator of cellular and whole-organism ageing rate. While approximately 80% of animal species undergo metamorphosis that includes extensive tissue transformations (involving cell division, apoptosis, de-differentiation and de novo formation of stem cells), the effect on telomere dynamics is unknown. We measured telomeres in Xenopus laevis developing from larvae to adults under contrasting environmental temperatures. Telomere dynamics were linked to the degree of tissue transformation during development. Average telomere length in gut tissue increased dramatically during metamorphosis, when the gut shortens by 75% and epithelial cells de-differentiate into stem cells. In the liver (retained from larva) and hindlimb muscle (newly formed before metamorphosis), telomeres gradually shortened until adulthood, likely due to extensive cell division. Tail muscle telomere lengths were constant until tail resorption, and those in heart (retained from larva) showed no change over time. Telomere lengths negatively correlated with larval growth, but for a given growth rate, telomeres were shorter in cooler conditions, suggesting that growing in the cold is more costly. Telomere lengths were not related to post-metamorphic growth rate. Further research is now needed to understand whether telomere dynamics are a good indicator of ageing rate in species undergoing metamorphosis.


Assuntos
Envelhecimento , Metamorfose Biológica , Animais , Temperatura , Larva , Telômero
6.
Mol Ecol ; 32(17): 4911-4920, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395529

RESUMO

Heat waves are predicted to be detrimental for organismal physiology with costs for survival that could be reflected in markers of biological state such as telomeres. Changes in early life telomere dynamics driven by thermal stress are of particular interest during the early post-natal stages of altricial birds because nestlings quickly shift from being ectothermic to endothermic after hatching. Telomeres of ectothermic and endothermic organisms respond differently to environmental temperature, but few investigations within species that transition from ectothermy to endothermy are available. Also, ambient temperature influences parental brooding behaviour, which will alter the temperature experienced by offspring and thereby, potentially, their telomeres. We exposed zebra finch nestlings to experimental heat waves and compared their telomere dynamics to that of a control group at 5, 12 and 80 days of age that encapsulate the transition from the ectothermic to the endothermic thermoregulatory stage; we also recorded parental brooding, offspring sex, mass, growth rates, brood size and hatch order. Nestling mass showed an inverse relationship with telomere length, and nestlings exposed to heat waves showed lower telomere attrition during their first 12 days of life (ectothermic stage) compared to controls. Additionally, parents of heated broods reduced the time they spent brooding offspring (at 5 days old) compared to controls. Our results indicate that the effect of heat waves on telomere dynamics likely varies depending on age and thermoregulatory stage of the offspring in combination with parental brooding behaviour during growth.


Assuntos
Tentilhões , Passeriformes , Animais , Temperatura Alta , Passeriformes/fisiologia , Regulação da Temperatura Corporal , Telômero/genética , Tentilhões/genética
7.
Proc Biol Sci ; 289(1970): 20212679, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35232239

RESUMO

It is increasingly being postulated that among-individual variation in mitochondrial function underlies variation in individual performance (e.g. growth rate) and state of health. It has been suggested (but not adequately tested) that environmental conditions experienced before birth could programme postnatal mitochondrial function, with persistent effects potentially lasting into adulthood. We tested this hypothesis in an avian model by experimentally manipulating prenatal conditions (incubation temperature and stability) and then measuring mitochondrial aerobic metabolism in blood cells from the same individuals during the middle of the growth period and at adulthood. Mitochondrial aerobic metabolism changed markedly across life stages, and parts of these age-related changes were influenced by the prenatal temperature conditions. A high incubation temperature induced a consistent and long-lasting increase in mitochondrial aerobic metabolism. Postnatal mitochondrial aerobic metabolism was positively associated with oxidative damage on DNA but not telomere length. While we detected significant within-individual consistency in mitochondrial aerobic metabolism across life stages, the prenatal temperature regime only accounted for a relatively small proportion (less than 20%) of the consistent among-individual differences we observed. Our results demonstrate that prenatal conditions can programme consistent and long-lasting differences in mitochondrial function, which could potentially underlie among-individual variation in performance and health state.


Assuntos
Mitocôndrias , Estresse Oxidativo , Adulto , Feminino , Temperatura Alta , Humanos , Mitocôndrias/metabolismo , Gravidez , Temperatura
8.
Mol Ecol ; 31(23): 6261-6272, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551154

RESUMO

Telomere length and DNA methylation (DNAm) are two promising biomarkers of biological age. Environmental factors and life history traits are known to affect variation in both these biomarkers, especially during early life, yet surprisingly little is known about their reciprocal association, especially in natural populations. Here, we explore how variation in DNAm, growth rate, and early-life conditions are associated with telomere length changes during development. We tested these associations by collecting data from wild, nestling zebra finches in the Australian desert. We found that increases in the level of DNAm were negatively correlated with telomere length changes across early life. We also confirm previously documented effects of post hatch growth rate and clutch size on telomere length in a natural ecological context for a species that has been extensively studied in the laboratory. However, we did not detect any effect of ambient temperature during developmental on telomere length dynamics. We also found that the absolute telomere length of wild zebra finches, measured using the in-gel TRF method, was similar to that of captive birds. Our findings highlight exciting new opportunities to link and disentangle potential relationships between DNA based biomarkers of ageing, and of physiological reactions to environmental change.


Assuntos
Tentilhões , Animais , Tentilhões/genética , Metilação de DNA/genética , Austrália , Envelhecimento/genética , Telômero/genética
9.
Mol Ecol ; 31(23): 6360-6381, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34825754

RESUMO

Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2  = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2  = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.


Assuntos
Estudo de Associação Genômica Ampla , Passeriformes , Animais , Longevidade/genética , Telômero/genética , Passeriformes/genética
10.
Mol Ecol ; 31(23): 6224-6238, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34997994

RESUMO

Telomere dynamics could underlie life-history trade-offs among growth, size and longevity, but our ability to quantify such processes in natural, unmanipulated populations is limited. We investigated how 4 years of artificial selection for either larger or smaller tarsus length, a proxy for body size, affected early-life telomere length (TL) and several components of fitness in two insular populations of wild house sparrows over a study period of 11 years. The artificial selection was expected to shift the populations away from their optimal body size and increase the phenotypic variance in body size. Artificial selection for larger individuals caused TL to decrease, but there was little evidence that TL increased when selecting for smaller individuals. There was a negative correlation between nestling TL and tarsus length under both selection regimes. Males had longer telomeres than females and there was a negative effect of harsh weather on TL. We then investigated whether changes in TL might underpin fitness effects due to the deviation from the optimal body size. Mortality analyses indicated disruptive selection on TL because both short and long early-life telomeres tended to be associated with the lowest mortality rates. In addition, there was a tendency for a negative association between TL and annual reproductive success, but only in the population where body size was increased experimentally. Our results suggest that natural selection for optimal body size in the wild may be associated with changes in TL during growth, which is known to be linked to longevity in some bird species.


Assuntos
Longevidade , Passeriformes , Humanos , Masculino , Feminino , Animais , Longevidade/genética , Seleção Genética , Telômero , Passeriformes/genética , Encurtamento do Telômero/genética
11.
FASEB J ; 35(8): e21743, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34192361

RESUMO

The effects of stress exposure are likely to vary depending on life-stage and stressor. While it has been postulated that mild stress exposure may have beneficial effects, the duration of such effects and the underlying mechanisms are unclear. While the long-term effects of early-life stress are relatively well studied, we know much less about the effects of exposure in adulthood since the early- and adult-life environments are often similar. We previously reported that repeated experimental exposure to a relatively mild stressor in female zebra finches, first experienced in young adulthood, initially had no effect on mortality risk, reduced mortality in middle age, but the apparently beneficial effects disappeared in old age. We show here that this is underpinned by differences between the control and stress-exposed group in the pattern of telomere change, with stress-exposed birds showing reduced telomere loss in middle adulthood. We thereby provide novel experimental evidence that telomere dynamics play a key role linking stress resilience and aging.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Tentilhões/genética , Tentilhões/fisiologia , Longevidade/genética , Longevidade/fisiologia , Homeostase do Telômero/genética , Homeostase do Telômero/fisiologia , Animais , Meio Ambiente , Feminino , Tentilhões/sangue , Fatores de Risco , Estresse Fisiológico/genética , Encurtamento do Telômero/genética , Encurtamento do Telômero/fisiologia
12.
J Anim Ecol ; 91(1): 20-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34679183

RESUMO

Conceptual and methodological advances in population and evolutionary ecology are often pursued with the ambition that they will help identify demographic, ecological and genetic constraints on population growth rate (λ), and ultimately facilitate evidence-based conservation. However, such advances are often decoupled from conservation practice, impeding translation of scientific understanding into effective conservation and of conservation-motivated research into wider conceptual understanding. We summarise key outcomes from long-term studies of a red-billed chough Pyrrhocorax pyrrhocorax population of conservation concern, where we proactively aimed to achieve the dual and interacting objectives of advancing population and evolutionary ecology and advancing effective conservation. Estimation of means, variances and covariances in key vital rates from individual-based demographic data identified temporal and spatial variation in subadult survival as key constraints on λ, and simultaneously provided new insights into how vital rates can vary as functions of demographic structure, natal conditions and parental life history. Targeted analyses showed that first-year survival increased with prey abundance, implying that food limitation may constrain λ. First-year survival then decreased dramatically, threatening population viability and prompting emergency supplementary feeding interventions. Detailed evaluations suggested that the interventions successfully increased first-year survival in some years and additionally increased adult survival and successful reproduction, thereby feeding back to inform intervention refinements and understanding of complex ecological constraints on λ. Genetic analyses revealed novel evidence of expression of a lethal recessive allele, and demonstrated how critically small effective population size can arise, thereby increasing inbreeding and loss of genetic variation. Population viability analyses parameterised with all available demographic and genetic data showed how ecological and genetic constraints can interact to limit population viability, and identified ecological management as of primacy over genetic management to ensure short-term persistence of the focal population. This case study demonstrates a full iteration through the sequence of primary science, evidence-based intervention, quantitative evaluation and feedback that is advocated in conservation science but still infrequently achieved. It thereby illustrates how pure science advances informed conservation actions to ensure the (short-term) stability of the target population, and how conservation-motivated analyses fed back to advance fundamental understanding of population processes.


Assuntos
Passeriformes , Animais , Evolução Biológica , Conservação dos Recursos Naturais , Ecologia , Endogamia , Densidade Demográfica , Crescimento Demográfico
13.
J Anim Ecol ; 91(7): 1489-1506, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470435

RESUMO

In vertebrates, thyroid hormones (THs) play an important role in the regulation of growth, development, metabolism, photoperiodic responses and migration. Maternally transferred THs are important for normal early phase embryonic development when embryos are not able to produce endogenous THs. Previous studies have shown that variation in maternal THs within the physiological range can influence offspring phenotype. Given the essential functions of maternal THs in development and metabolism, THs may be a mediator of life-history variation across species. We tested the hypothesis that differences in life histories are associated with differences in maternal TH transfer across species. Using birds as a model, we specifically tested whether maternally transferred yolk THs covary with migratory status, developmental mode and traits related to pace-of-life (e.g. basal metabolic rate, maximum life span). We collected un-incubated eggs (n = 1-21 eggs per species, median = 7) from 34 wild and captive bird species across 17 families and six orders to measure yolk THs [both triiodothyronine (T3) and thyroxine (T4)], compiled life-history trait data from the literature and used Bayesian phylogenetic mixed models to test our hypotheses. Our models indicated that both concentrations and total amounts of the two main forms of THs (T3 and T4) were higher in the eggs of migratory species compared to resident species, and total amounts were higher in the eggs of precocial species, which have longer prenatal developmental periods, than in those of altricial species. However, maternal yolk THs did not show clear associations with pace-of-life-related traits, such as fecundity, basal metabolic rate or maximum life span. We quantified interspecific variation in maternal yolk THs in birds, and our findings suggest higher maternal TH transfer is associated with the precocial mode of development and migratory status. Whether maternal THs represent a part of the mechanism underlying the evolution of precocial development and migration or a consequence of such life histories is currently unclear. We therefore encourage further studies to explore the physiological mechanisms and evolutionary processes underlying these patterns.


Assuntos
Hormônios Tireóideos , Tri-Iodotironina , Animais , Teorema de Bayes , Aves , Filogenia , Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo
14.
Proc Biol Sci ; 288(1956): 20211118, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375555

RESUMO

There is a wealth of evidence for a lifespan penalty when environmental conditions influence an individual's growth trajectory, such that growth rate is accelerated to attain a target size within a limited time period. Given this empirically demonstrated relationship between accelerated growth and lifespan, and the links between lifespan and telomere dynamics, increased telomere loss could underpin this growth-lifespan trade. We experimentally modified the growth trajectory of nestling zebra finches (Taeniopygia guttata), inducing a group of nestlings to accelerate their growth between 7 and 15 days of age, the main phase of body growth. We then sequentially measured their telomere length in red blood cells at various time points from 7 days to full adulthood (120 days). Accelerated growth between 7 and 15 days was not associated with a detectable increase in telomere shortening during this period compared with controls. However, only in the treatment group induced to show growth acceleration was the rate of growth during the experimental period positively related to the amount of telomere shortening between 15 and 120 days. Our findings provide evidence of a long-term influence of growth rate on later-life telomere shortening, but only when individuals have accelerated growth in response to environmental circumstances.


Assuntos
Aves Canoras , Encurtamento do Telômero , Aceleração , Animais , Longevidade , Telômero/genética
15.
Proc Biol Sci ; 287(1933): 20201378, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32842933

RESUMO

Prenatal effects on telomere length are increasingly recognized as a potential contributor to the developmental origin of health and adult disease. While it is becoming clear that telomere length is influenced by prenatal conditions, the factors affecting telomere dynamics during embryogenesis remain poorly understood. We manipulated both the pace and stability of embryonic development through varying incubation temperature and its stability in Japanese quail. We investigated the impact on telomere dynamics from embryogenesis to adulthood, together with three potential drivers of telomere shortening, growth rate, oxidative damage and prenatal glucocorticoid levels. Telomere length was not affected by our prenatal manipulation for the first 75% of embryogenesis, but was reduced at hatching in groups experiencing faster (i.e. high temperature) or less stable embryonic development. These early life differences in telomere length persisted until adulthood. The effect of developmental instability on telomere length at hatching was potentially mediated by an increased secretion of glucocorticoid hormones during development. Both the pace and the stability of embryo development appear to be key factors determining telomere length and dynamics into adulthood, with fast and less stable development leading to shorter telomeres, with the potential for adverse associated outcomes in terms of reduced longevity.


Assuntos
Coturnix , Desenvolvimento Embrionário , Telômero , Adulto , Animais , Feminino , Glucocorticoides , Humanos , Gravidez , Encurtamento do Telômero , Temperatura
16.
Glob Chang Biol ; 26(10): 5371-5381, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32835446

RESUMO

Human activity is changing climatic conditions at an unprecedented rate. The impact of these changes may be especially acute on ectotherms since they have limited capacities to use metabolic heat to maintain their body temperature. An increase in temperature is likely to increase the growth rate of ectothermic animals, and may also induce thermal stress via increased exposure to heat waves. Fast growth and thermal stress are metabolically demanding, and both factors can increase oxidative damage to essential biomolecules, accelerating the rate of ageing. Here, we explore the potential impact of global warming on ectotherm ageing through its effects on reactive oxygen species production, oxidative damage, and telomere shortening, at the individual and intergenerational levels. Most evidence derives primarily from vertebrates, although the concepts are broadly applicable to invertebrates. We also discuss candidate mechanisms that could buffer ectotherms from the potentially negative consequences of climate change on ageing. Finally, we suggest some potential applications of the study of ageing mechanisms for the implementation of conservation actions. We find a clear need for more ecological, biogeographical, and evolutionary studies on the impact of global climate change on patterns of ageing rates in wild populations of ectotherms facing warming conditions. Understanding the impact of warming on animal life histories, and on ageing in particular, needs to be incorporated into the design of measures to preserve biodiversity to improve their effectiveness.


Assuntos
Mudança Climática , Aquecimento Global , Envelhecimento , Animais , Humanos , Temperatura , Vertebrados
17.
J Exp Biol ; 223(Pt 15)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32532864

RESUMO

Telomeres are DNA structures that protect chromosome ends. However, telomeres shorten during cell replication and at critically low lengths can reduce cell replicative potential, induce cell senescence and decrease fitness. Stress exposure, which elevates glucocorticoid hormone concentrations, can exacerbate telomere attrition. This phenomenon has been attributed to increased oxidative stress generated by glucocorticoids ('oxidative stress hypothesis'). We recently suggested that glucocorticoids could increase telomere attrition during stressful periods by reducing the resources available for telomere maintenance through changes in the metabolic machinery ('metabolic telomere attrition hypothesis'). Here, we tested whether experimental increases in glucocorticoid levels affected telomere length and mitochondrial function in wild great tit (Parus major) nestlings during the energy-demanding early growth period. We monitored resulting corticosterone (Cort) concentrations in plasma and red blood cells, telomere lengths and mitochondrial metabolism (metabolic rate, proton leak, oxidative phosphorylation, maximal mitochondrial capacity and mitochondrial inefficiency). We assessed oxidative damage caused by reactive oxygen species (ROS) metabolites as well as the total non-enzymatic antioxidant protection in plasma. Compared with control nestlings, Cort-nestlings had higher baseline corticosterone, shorter telomeres and higher mitochondrial metabolic rate. Importantly, Cort-nestlings showed increased mitochondrial proton leak, leading to a decreased ATP production efficiency. Treatment groups did not differ in oxidative damage or antioxidants. Hence, glucocorticoid-induced telomere attrition is associated with changes in mitochondrial metabolism, but not with ROS production. These findings support the hypothesis that shortening of telomere length during stressful periods is mediated by glucocorticoids through metabolic rearrangements.


Assuntos
Encurtamento do Telômero , Telômero , Glucocorticoides , Mitocôndrias , Estresse Oxidativo
18.
J Exp Biol ; 223(Pt 1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31796605

RESUMO

Elevations in glucocorticoid (GC) levels in breeding females may induce adaptive shifts in offspring life histories. Offspring produced by mothers with elevated GCs may be better prepared to face harsh environments, where a faster pace of life is beneficial. We examined how experimentally elevated GCs in pregnant or lactating North American red squirrels (Tamiasciurus hudsonicus) affected offspring postnatal growth, structural size and oxidative stress levels (two antioxidants and oxidative protein damage) in three different tissues (blood, heart and liver) and liver telomere lengths. We predicted that offspring from mothers treated with GCs would grow faster but would also have higher levels of oxidative stress and shorter telomeres, which may predict reduced longevity. Offspring from mothers treated with GCs during pregnancy were 8.3% lighter around birth but grew (in body mass) 17.0% faster than those from controls, whereas offspring from mothers treated with GCs during lactation grew 34.8% slower than those from controls and did not differ in body mass around birth. Treating mothers with GCs during pregnancy or lactation did not alter the oxidative stress levels or telomere lengths of their offspring. Fast-growing offspring from any of the treatment groups did not have higher oxidative stress levels or shorter telomere lengths, indicating that offspring that grew faster early in life did not exhibit oxidative costs after this period of growth. Our results indicate that elevations in maternal GCs may induce plasticity in offspring growth without long-term oxidative costs to the offspring that might result in a shortened lifespan.


Assuntos
Glucocorticoides/metabolismo , Estresse Oxidativo , Sciuridae/fisiologia , Encurtamento do Telômero , Animais , Feminino , Masculino , Sciuridae/crescimento & desenvolvimento
19.
Proc Biol Sci ; 286(1917): 20192187, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847776

RESUMO

The idea that there is an impenetrable barrier that separates the germline and soma has shaped much thinking in evolutionary biology and in many other disciplines. However, recent research has revealed that the so-called 'Weismann Barrier' is leaky, and that information is transferred from soma to germline. Moreover, the germline itself is now known to age, and to be influenced by an age-related deterioration of the soma that houses and protects it. This could reduce the likelihood of successful reproduction by old individuals, but also lead to long-term deleterious consequences for any offspring that they do produce (including a shortened lifespan). Here, we review the evidence from a diverse and multidisciplinary literature for senescence in the germline and its consequences; we also examine the underlying mechanisms responsible, emphasizing changes in mutation rate, telomere loss, and impaired mitochondrial function in gametes. We consider the effect on life-history evolution, particularly reproductive scheduling and mate choice. Throughout, we draw attention to unresolved issues, new questions to consider, and areas where more research is needed. We also highlight the need for a more comparative approach that would reveal the diversity of processes that organisms have evolved to slow or halt age-related germline deterioration.


Assuntos
Evolução Biológica , Células Germinativas , Envelhecimento , Animais , Longevidade , Neurônios , Reprodução
20.
Proc Biol Sci ; 286(1912): 20191845, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31575358

RESUMO

Offspring produced by older parents often have reduced longevity, termed the Lansing effect. Because adults usually have similar-aged mates, it is difficult to separate effects of maternal and paternal age, and environmental circumstances are also likely to influence offspring outcomes. The mechanisms underlying the Lansing effect are poorly understood. Variation in telomere length and loss, particularly in early life, is linked to longevity in many vertebrates, and therefore changes in offspring telomere dynamics could be very important in this context. We examined the effect of maternal age and environment on offspring telomere length in zebra finches. We kept mothers under either control (ad libitum food) or more challenging (unpredictable food) circumstances and experimentally minimized paternal age and mate choice effects. Irrespective of the maternal environment, there was a substantial negative effect of maternal age on offspring telomere length, evident in longitudinal and cross-sectional comparisons (average of 39% shorter). Furthermore, in young mothers, sons reared by challenged mothers had significantly shorter telomere lengths than sons reared by control mothers. This effect disappeared when the mothers were old, and was absent in daughters. These findings highlight the importance of telomere dynamics as inter-generational mediators of the evolutionary processes determining optimal age-specific reproductive effort and sex allocation.


Assuntos
Idade Materna , Aves Canoras/fisiologia , Estresse Fisiológico , Telômero/fisiologia , Fatores Etários , Animais , Estudos Transversais , Feminino , Tentilhões/fisiologia , Estudos Longitudinais , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa