Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 426(1): 55-64, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19922412

RESUMO

Synapsins are abundant SV (synaptic vesicle)-associated phosphoproteins that regulate synapse formation and function. The highly conserved C-terminal domain E was shown to contribute to several synapsin functions, ranging from formation of the SV reserve pool to regulation of the kinetics of exocytosis and SV cycling, although the molecular mechanisms underlying these effects are unknown. In the present study, we used a synthetic 25-mer peptide encompassing the most conserved region of domain E (Pep-E) to analyse the role of domain E in regulating the interactions between synapsin I and liposomes mimicking the phospholipid composition of SVs (SV-liposomes) and other pre-synaptic protein partners. In affinity-chromatography and cross-linking assays, Pep-E bound to endogenous and purified exogenous synapsin I and strongly inhibited synapsin dimerization, indicating a role in synapsin oligomerization. Consistently, Pep-E (but not its scrambled version) counteracted the ability of holo-synapsin I to bind and coat phospholipid membranes, as analysed by AFM (atomic force microscopy) topographical scanning, and significantly decreased the clustering of SV-liposomes induced by holo-synapsin I in FRET (Förster resonance energy transfer) assays, suggesting a causal relationship between synapsin oligomerization and vesicle clustering. Either Pep-E or a peptide derived from domain C was necessary and sufficient to inhibit both dimerization and vesicle clustering, indicating the participation of both domains in these activities of synapsin I. The results provide a molecular explanation for the effects of domain E in nerve terminal physiology and suggest that its effects on the size and integrity of SV pools are contributed by the regulation of synapsin dimerization and SV clustering.


Assuntos
Fosfolipídeos/metabolismo , Multimerização Proteica/fisiologia , Sinapsinas/química , Sinapsinas/metabolismo , Animais , Cromatografia de Afinidade , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Microscopia de Força Atômica , Fosfolipídeos/química , Multimerização Proteica/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sinapsinas/genética
2.
J Biol Chem ; 284(49): 34244-56, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19759398

RESUMO

Amphiphysin 1, an endocytic adaptor concentrated at synapses that couples clathrin-mediated endocytosis to dynamin-dependent fission, was also shown to have a regulatory role in actin dynamics. Here, we report that amphiphysin 1 interacts with N-WASP and stimulates N-WASP- and Arp2/3-dependent actin polymerization. Both the Src homology 3 and the N-BAR domains are required for this stimulation. Acidic liposome-triggered, N-WASP-dependent actin polymerization is strongly impaired in brain cytosol of amphiphysin 1 knock-out mice. FRET-FLIM analysis of Sertoli cells, where endogenously expressed amphiphysin 1 co-localizes with N-WASP in peripheral ruffles, confirmed the association between the two proteins in vivo. This association undergoes regulation and is enhanced by stimulating phosphatidylserine receptors on the cell surface with phosphatidylserine-containing liposomes that trigger ruffle formation. These results indicate that actin regulation is a key function of amphiphysin 1 and that such function cooperates with the endocytic adaptor role and membrane shaping/curvature sensing properties of the protein during the endocytic reaction.


Assuntos
Actinas/química , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Animais , Encéfalo/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Endocitose , Transferência Ressonante de Energia de Fluorescência , Lipossomos/química , Masculino , Camundongos , Camundongos Knockout , Ratos , Receptores de Superfície Celular/metabolismo , Células de Sertoli/metabolismo
3.
FEBS Lett ; 538(1-3): 71-6, 2003 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-12633855

RESUMO

The receptor mechanisms regulating the ATP-induced free cytosolic Ca(2+) concentration ([Ca(2+)](i)) changes in cultured rat cortical type-1 astrocytes were analyzed using fura-2-based Ca(2+) imaging microscopy. Upon prolonged ATP challenge (1-100 microM), astroglial cells displayed a biphasic [Ca(2+)](i) response consisting of an initial peak followed by a sustained elevation. Suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid blocked both components, albeit to a different extent. By contrast, the selective P2X7 antagonist oxidized ATP irreversibly abrogated the sustained [Ca(2+)](i) signal without affecting the transient phase. Finally, astrocyte challenge with the selective P2X7 agonist 3'-O-(4-benzoyl)benzoyl-ATP evoked a sustained [Ca(2+)](i) elevation, which occluded that induced by ATP. We can conclude that in cultured cortical astrocytes the ATP-mediated sustained [Ca(2+)](i) rise does not implicate capacitative Ca(2+) entry but involves Ca(2+) influx through P2X7-like receptors.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Sinalização do Cálcio , Córtex Cerebral/metabolismo , Fosfato de Piridoxal/análogos & derivados , Receptores Purinérgicos P2/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Fosfato de Piridoxal/farmacologia , Ratos , Receptores Purinérgicos P2X7 , Suramina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa