Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(17): 7604-7612, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38556753

RESUMO

A new iron(II) molecular complex {[W(CN)8][Fe(bik*)3]2}BF4·7H2O·1.5CH3OH (1.7H2O·1.5CH3OH) was synthesized using a versatile octacyanotungstate(V) building block and N-donor bidentate ligand (bik* = bis(1-ethyl-1H-imidazol-2-yl)ketone) and detailed characterizations were carried out. The crystal structure of 1.7H2O·1.5CH3OH is composed of an ionic salt from one anionic [W(CN)8]3- unit, two isolated cationic [Fe(bik*)3]2+ units, and one BF4- counteranion in the asymmetric unit. Magnetic studies of 1.7H2O·1.5CH3OH display interesting two-step reversible thermo-induced spin-state switching and the partially desolvated form 1.7H2O shows a photomagnetic effect at low temperatures. Additionally, the physical properties of 1.7H2O·1.5CH3OH were compared with the monomeric unit of {[Fe(bik*)3]2}·4ReO4·H2O (2.H2O) and detailed photophysical investigations were also performed to study the effect of a structural matrix {[W(CN)8]3- and ReO4- unit} on the spin-state switching properties of the [Fe(bik*)3]2+ unit in both systems (1.7H2O·1.5CH3OH and 2.H2O).

2.
J Am Chem Soc ; 145(29): 15896-15905, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440690

RESUMO

Finding stable analogues of three-dimensional (3D) lead halide perovskites has motivated the exploration of an ever-expanding repertoire of two-dimensional (2D) counterparts. However, the bandgap and exciton binding energy in these 2D systems are generally considerably higher than those in 3D analogues due to size and dielectric confinement. Such quantum confinements are most prominently manifested in the extreme 2D realization in (A)mPbI4 (m = 1 or 2) series of compounds with a single inorganic layer repeat unit. Here, we explore a new A-site cation, 4,4'-azopyridine (APD), whose size and hydrogen bonding properties endow the corresponding (APD)PbI4 2D compound with the lowest bandgap and exciton binding energy of all such compounds, 2.19 eV and 48 meV, respectively. (APD)PbI4 presents the first example of the ideal Pb-I-Pb bond angle of 180°, maximizing the valence and conduction bandwidths and minimizing the electron and hole effective masses. These effects coupled with a significant increase in the dielectric constant provide an explanation for the unique bandgap and exciton binding energies in this system. Our theoretical results further reveal that the requirement of optimizing the hydrogen bonding interactions between the organic and the inorganic units provides the driving force for achieving the structural uniqueness and the associated optoelectronic properties in this system. Our preliminary investigations in characterizing photovoltaic solar cells in the presence of APD show encouraging improvements in performances and stability.

3.
Inorg Chem ; 62(23): 8794-8802, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36867089

RESUMO

A mixed-valence Fe(II)Fe(III) molecular system, {[Fe(pzTp)(CN)3]2[Fe(bik)2]2}·[Fe(pzTp)(CN)3]2·4MeOH (1·4MeOH) (bik = bis-(1-methylimidazolyl)-2-methanone, pzTp = tetrakis(pyrazolyl)borate), exhibits single-crystal-to-single-crystal (SC-SC) transformation while increasing the temperature and is converted into {[Fe(pzTp)(CN)3]2[Fe(bik)2]2}·[Fe(pzTp)(CN)3]2 (1). Both complexes exhibit thermo-induced spin-state switching behavior along with reversible SC-SC transformation, where the low-temperature [FeIIILSFeIILS]2 phase transforms into a high-temperature [FeIIILSFeIIHS]2 phase. 1·4MeOH exhibits an abrupt spin-state switching with T1/2 at 355 K, whereas 1 undergoes a gradual and reversible spin-state switching with a lower T1/2 at 338 K. Astonishingly, 1 exhibits ON/OFF photo-induced spin-state switching with TLIESST = 67 K, whereas 1·4MeOH does not show such an effect.

4.
Inorg Chem ; 61(43): 17080-17088, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36264687

RESUMO

The self-assembly of a redox-active ethylenedioxythiophene (EDOT)-terpyridine-based tridentate ligand and cobalt(II) unit with different counteranions has led to a series of new cobalt(II) complexes [Co(L)2](X)2 (X = BF4 (1), ClO4 (2), and BPh4 (3)) (L = 4'-(3,4-ethylenedioxythiophene)-2,2':6',2″-terpyridine). The impact of various counteranions on stabilization and spin-state switching of the cobalt(II) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, electrochemical, and spectroelectrochemical studies. All three complexes 1-3 consisted of an isostructural dicationic distorted octahedral CoN6 coordination environment offered by the two L ligands in a bis-meridional fashion and BF4-, ClO4-, and BPh4- as a counteranion, respectively. Complex 2 with ClO4- counteranion showed a reversible, gradual, and nearly complete spin-state switching between low-spin (LS) (S = 1/2) and high-spin (HS) (S = 3/2) states, while an incomplete spin-state switching behavior was observed for complexes 1 (BF4-) and 3 (BPh4-) in the measured temperature range of 350-2 K. The non-covalent cation-anion interactions played a significant role in stabilizing the spin-state in 1-3. Additionally, complexes 1-3 also exhibited interesting redox-stimuli-based reversible paramagnetic HS cobalt(II) (S = 3/2) to diamagnetic LS cobalt(III) (S = 0) conversion, offering an alternate way to switch the magnetic properties.

5.
J Am Chem Soc ; 143(10): 3687-3692, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33651600

RESUMO

Herein we report the synthesis and characterization of anionic boron- and carbon-based Kekulé diradicaloids spanned by a p-phenylene bridge. In contrast to Thiele's hydrocarbon, a closed-shell singlet system, they show an appreciable population of the triplet state at room temperature, as evidenced by both NMR and EPR spectroscopy. Moreover, en route to these anionic boron- and carbon-based hetero-diradicaloids, the formation of an isolable diamino(4-diarylboryl-phenyl)methyl radical was observed.

6.
Inorg Chem ; 60(10): 7545-7552, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33929177

RESUMO

Following the complex-as-a-ligand strategy, self-assembly of [W(CN)8]3- and iron(II) with bidentate nitrogen donor ligand bik (bik = bis(1-methyl-1H-imidazol-2-yl)ketone) ligand affords a cyanide-bridged [W2Fe2] molecular square complex [HNBu3]2{[W(CN)8]2[Fe(bik)2]2}·6H2O·CH3OH (1). The complex was characterized by single-crystal X-ray diffraction analyses, (photo)magnetic studies, optical reflectivity, electrochemical studies, and spectroscopic studies. Structural analyses revealed that in the [W2Fe2] square motif tungsten(V) and iron(II) centers reside in an alternate corner of the square and are bridged by the cyanide ligands. Complex 1 exhibits thermo-induced spin crossover (SCO) between {WV (S = 1/2) - FeIILS (S = 0)} and {WV (S = 1/2) - FeIIHS (S = 2)} pairs near room temperature and photoinduced spin-state switching with TLIESST = 70 K under light irradiation at low temperature. To the best of our knowledge, 1 represents the first complex containing iron(II) and [WV(CN)8]3- units exhibiting both SCO and photomagnetic effect.

7.
J Phys Chem A ; 125(22): 4775-4783, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33890768

RESUMO

A series of three new cyanide-bridged [FeCo] molecular square complexes, namely, {[Fe(Tp*)(CN)3]2[Co(L)2]2}(BF4)2·2DMF (L = bik (1), bik* (2), and vbik (3); Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate, bik = bis(1-methyl-1H-imidazol-2-yl)ketone, bik* = bis(1-ethyl-1H-imidazol-2-yl)ketone, and vbik = bis(1-vinyl-1H-imidazol-2-yl)ketone; DMF = dimethylformamide) were synthesized and characterized by single-crystal X-ray diffraction analyses and by magnetic, electrochemical, and spectroscopic measurements. Magnetic studies reveal that all three complexes exhibit temperature-induced metal-to-metal electron transfer (MMET) from a high-spin Co(II) center to a low-spin Fe(III) center, transforming a high-temperature paramagnetic {FeIIILS-CN-CoIIHS} ground state into a low-temperature diamagnetic {FeIILS-CN-CoIIILS} state with a decrease in the temperature from 300 to 100 K. Complexes 1 and 3 show the interconversion of the paramagnetic {FeIIILS-CN-CoIIHS} ground state into a diamagnetic {FeIILS-CN-CoIIILS} state in a single-step transition with T1/2 values of 180 and 186 K, respectively, while a two-step MMET with T1/2 value of 214 and 178 K was observed for complex 2.

8.
Inorg Chem ; 59(23): 17638-17649, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33174721

RESUMO

The self-assembly of a macrocyclic tetradentate ligand, cobalt(II) tetrafluoroborate, and nonlinear pseudohalides (dicyanamide and tricyanomethanide) has led to two cobalt(II) complexes, {[Co(L)(µ1,5-dca)](BF4)·MeOH}n (1) and [Co2(L)2(µ1,5-tcm)2](BF4)2 (2) (L = N,N'-di-tert-butyl-2,11-diaza[3,3](2,6)pyridinophane; dca- = dicyanamido; tcm- = tricyanomethanido). Both complexes were characterized by single-crystal X-ray diffraction, spectroscopic, magnetic, and electrochemical studies. Structural analyses revealed that 1 displays a one-dimensional (1D) coordination polymer containing [Co(L)]2+ repeating units bridged by µ1,5-dicyanamido groups in cis positions, while 2 represents a discreate dinuclear cobalt(II) molecule bridged by two µ1,5-tricyanomethanido groups in a cis conformation. Both complexes have a CoN6 coordination environment around each cobalt center offered by the tetradentate ligand and cis coordinating bridging ligands. Complex 1 exhibits a high-spin (S = 3/2) state of cobalt(II) in the temperature range of 2-300 K with a weak ferromagnetic coupling between two dicyanamido-bridged cobalt(II) centers. Interestingly, complex 2 exhibits reversible spin-state switching associated with spin-spin coupling. Complexes 1 and 2 also exhibit interesting redox-stimuli-based reversible paramagnetic high-spin cobalt(II) to diamagnetic low-spin cobalt(III) conversion, offering an additional way to switch magnetic properties. A detailed theoretical calculation was consistent with the stated results.

9.
Inorg Chem ; 59(18): 13009-13013, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32875794

RESUMO

A 2D coordination polymer, {[Fe(L)2(NCSe)2]·6MeOH·14H2O}n (1; L = 2,5-dipyridylethynylene-3,4-ethylenedioxythiophene), has been synthesized based on a redox active luminescence ligand. 1 possesses a 2D [4 × 4] square-grid network where the iron(II) center is in a FeN6 octahedral coordination environment. 1 displays reversible thermoinduced high-spin (HS; S = 2) to diamagnetic low-spin (LS; S = 0) ON/OFF spin-state switching with a T1/2 value of 150 K. Interestingly, optical reflectivity and photomagnetic studies at 10 K under light irradiation revealed an efficient conversion to a photoinduced metastable HS excited state from a LS ground state. Remarkably, the photoexcited HS state can be reversibly switched ON and OFF by using 625 and 850 nm light-emitting-diode lights. Intriguingly, the thermal dependence of the luminescence intensity of the maximum emission at 524 nm for 1 shows a minimum at around the spin-crossover (SCO) temperature, indicating a cooperative nature between the SCO and luminescence properties. Theoretical calculations confirmed the above findings.

10.
Inorg Chem ; 59(17): 11879-11888, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32803968

RESUMO

A cyanide-bridged [Fe2Co2] molecular square complex, {[Fe(Tp)(CN)3]2[Co(L)2]2}(BF4)2·2CH3CN·6H2O [1; Tp = hydrotris(pyrazol-1-yl)borate and L = bis(1-ethyl-1H-imidazol-2-yl)ketone], has been synthesized and characterized fully by single-crystal X-ray diffraction, (photo)magnetic measurements, optical reflectivity, and other physical measurements. 1 exhibits a two-step metal-to-metal electron-transfer (MMET)-induced spin transition accompanied by thermal hysteresis (T1/2↑ = 332 and 407 K and T1/2↓ = 320 and 405 K, respectively), converting the low-temperature diamagnetic {FeIILS-CN-CoIIILS} ground state into the high-temperature paramagnetic {FeIIILS-CN-CoIIHS} state. Additionally, 1 displays reversible photoinduced MMET under light irradiation (ON mode using 808 nm laser light and OFF mode using 532 nm laser light), as confirmed by optical reflectivity and (photo)magnetic measurements. The photoinduced paramagnetic metastable state relaxes back to the diamagnetic ground state at 91 K (TLIESST = 91 K). Astonishingly, 1 also exhibits a 27 K wide light-induced thermal hysteresis below 100 K. The overall results show that 1 is a multistimuli-responsive bistable material that exhibits reversible switching between the diamagnetic state, {FeIILS-CN-CoIIILS}, and the paramagnetic state, {FeIIILS-CN-CoIIHS}, under the application of temperature and light.

11.
Inorg Chem ; 59(10): 7067-7081, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32378897

RESUMO

The three Co(II) complexes [Co(bbp)2][Co(NCS)4]·4DMF (1), [Co(bbp)(NCS)2(DMF)]·2DMF (2), and [Co(bbp)(NCS)2] (3) have been synthesized and characterized by single-crystal X-ray diffraction, magnetic, and various spectroscopic techniques. Complexes 1 and 3 are obtained by the reaction of Co(NCS)2 with 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine (bbp), and complex 1 undergoes a structural transformation to form complex 2. A single-crystal X-ray study revealed that complex 1 is comprised of two Co(II) centers, a cationic octahedral Co(II) unit and an anionic tetrahedral Co(II) unit, while the Co(II) ion is in a distorted-octahedral environment in 2. Moreover, in complex 3, the Co(II) ion is in a distorted-square-pyramidal geometry. The effect of coordination geometry on the magnetic properties was studied by both static and dynamic magnetic measurements. Direct current (dc) magnetic susceptibility measurements showed that all of the Co(II) ions are in high-spin state in these complexes. Alternating current (ac) magnetic susceptibility measurements indicated that complexes 2 and 3 display slow relaxation of magnetization in an external dc magnetic field, while complex 1 displayed no such property. EPR experiments and theoretical calculations were consistent with the above findings.

12.
Angew Chem Int Ed Engl ; 59(26): 10306-10310, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32080955

RESUMO

Silicon-mediated fluoride abstraction is demonstrated as a means of generating the first fluorido-cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes, trans-[MIV F4 (CN)2 ]2- (M=Re, Os), obtained from their homoleptic [MIV F6 ]2- parents. As shown by combined high-field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy of trans-[ReF4 (CN)2 ]2- as compared to [ReF6 ]2- , reflecting the severe departure from an ideal octahedral (Oh point group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building-blocks for the design of high-performance molecule-based magnetic materials.

13.
Chemistry ; 25(52): 12120-12136, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31461188

RESUMO

The local magnetic structure in the [FeIII (Tp)(CN)3 ]- building block was investigated by combining paramagnetic Nuclear Magnetic Resonance (pNMR) spectroscopy and polarized neutron diffraction (PND) with first-principle calculations. The use of the pNMR and PND experimental techniques revealed the extension of spin-density from the metal to the ligands, as well as the different spin mechanisms that take place in the cyanido ligands: Spin-polarization on the carbon atoms and spin-delocalization on the nitrogen atoms. The results of our combined density functional theory (DFT) and multireference calculations were found in good agreement with the PND results and the experimental NMR chemical shifts. Moreover, the ab-initio calculations allowed us to connect the experimental spin-density map characterized by PND and the suggested distribution of the spin-density on the ligands observed by NMR spectroscopy. Interestingly, significant differences were observed between the pseudo-contact contributions of the chemical shifts obtained by theoretical calculations and the values derived from NMR spectroscopy using a simple point-dipole model. These discrepancies underline the limitation of the point-dipole model and the need for more elaborate approaches to break down the experimental pNMR chemical shifts into contact and pseudo-contact contributions.

14.
Inorg Chem ; 58(7): 4201-4213, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860362

RESUMO

A new triphenolic hexaaza chiral macrocyclic amine L forms trinuclear complexes 1-3 with rare earth metal lanthanide(III) ions (Ln = Dy, Eu, and Y) with the general formula [Ln3L(µ3-OH)2(NO3)4(H2O)2]· xCH3OH. The crystal structures of the nitrate derivatives of this type reveal the presence of a {Ln3(µ3-OH)2} core within the macrocycle. For the chloride derivative of dysprosium(III) 4, a duplex of the trinuclear compound is formed to give the hexanuclear [Dy6L2(µ3-OH)3(µ3-O)(µ2-Cl)3Cl4(H2O)2] compound, in which two trinuclear macrocyclic units are linked by bridging chloride anions, supplemented by a hydrogen bond connecting the central oxo and hydroxo bridges as well as by weak interactions at the periphery of the macrocycle. The nuclear magnetic resonance spectra of these complexes reveal a dynamic behavior in solution related to exchange of axial ligands and hindered rotation of phenyl substituents. Magnetic studies of the nitrate (1-3) and chloride (4) dysprosium(III) complexes suggest the presence of weak ferromagnetic interactions between neighboring metal centers. The interaction is strongest for compound 1, and for the related duplex compound 4, it appears to be somewhat weaker. The ac susceptibility measurements for complexes 1 and 4 confirm their field-induced single-molecule magnet behavior with the following characteristics: Ueff = 10.6 cm-1 (15.2 K), τ0 = 2.05 × 10-4 s under 2500 Oe dc fields for 1; Ueff = 7.9 cm-1 (11.4 K), τ0 = 1.68 × 10-4 s under a 3000 Oe dc field for 4.

16.
J Am Chem Soc ; 140(26): 8218-8227, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874065

RESUMO

The iron(II) [2×2] grid complex Fe-8H has been synthesized and characterized. It undergoes spin-crossover (SCO) upon deprotonation of the hydrazine-based terpyridine-like ligand. The deprotonation patterns have been determined by X-ray crystallography and 1H NMR spectroscopy and discussed in relation to the spin state of the iron(II) centers, which influences greatly the p Ka of the ligand. The synthesis of the magnetically silent zinc(II) analogue is also reported, and its (de)protonation behavior has been characterized to serve as a reference for the study of the FeII grid complexes. DFT computations have also been performed in order to investigate how the successive deprotonation of the bridging ligands affects the SCO behavior within the grid.

17.
Inorg Chem ; 56(21): 12764-12774, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29028330

RESUMO

Bis-azoaromatic electron traps, viz. 2-(2-pyridylazo)azoarene 1, have been synthesized by colligating electron-deficient pyridine and azoarene moieties, and they act as apposite proradical templates for the formation of stable open-shell diradical complexes [(1•-)RhIII(1•-)]+ ([2]+), starting from the low-valent electron reservoir [RhI]. The less stable monoradical [RhIII(1•-)Cl2(PPh3)3] (3) has also been isolated as a minor product. These π-radical complexes are multiredox systems, and the electron transfer processes occur exclusively within the pincer-type NNN ligand backbone 1. Molecular and electronic structures of the diradicals and monoradicals have been ascertained with the aid of X-ray diffraction, electrochemical, spectroelectrochemical, and spectral (electronic, IR, NMR, and EPR) studies. In the diradicals [2]+, the orthogonal disposition of two ligand π orbitals linked via a closed-shell metal center (t26) impedes significant coupling between the radicals. Indeed, the observed magnetic moment of [2a]+ lies near ∼2.3 µB over the temperature range 50-300 K. A very weak antiferromagnetic (AF) intramolecular spin-spin interaction between two ligand π arrays in [(1•-)RhIII(1•-)]+ have been found experimentally (J ≈ -5 cm-1), and this is further substantiated by density functional theory (DFT) calculations at the (U)B3LYP/6-31G(d,p) level.

18.
Inorg Chem ; 56(23): 14612-14623, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29160702

RESUMO

The reaction of a multisite coordination ligand, LH3, with Cu(II) salts and Ln(NO3)3·nH2O in a 1:2:1 stoichiometric ratio in the presence of triethylamine was found to afford a series of one-dimensional heterometallic [{Cu5Ln2(L)2(µ3-OH)4(ClO4)(NO3)3(OH2)5}(ClO4)2(H2O)x]∞ [Ln = Tb(1), Dy(2) and Ho(3), x = 4.25, 5.5, and 5 for 1-3, respectively] coordination polymers. Complexes 1-3 have been characterized by single crystal X-ray crystallography. The detailed study of the magnetic properties has also been performed and compared with the parent [Cu5Ln2] molecular analogues. The ac susceptibility measurements for complexes 1-3 confirm their SMM behavior with the following characteristics: Δeff/kB = 23.4 K, τ0 = 1.1 × 10-6 s and Δeff/kB = 27.9 K, τ0 = 6.6 × 10-7 s under 0 and 1200 Oe dc fields, respectively for 1; Δeff/kB = 8.3 K, τ0 = 3.1 × 10-6 s for 2 under 0 dc field. For 3, the fast QTM below 4 K prevents the estimation of the SMM energy barrier. Remarkably, the magnetic and SMM properties of the previously reported molecular [Cu5Ln2] analogues are preserved after their assembly in these coordination networks.

19.
Angew Chem Int Ed Engl ; 55(12): 3963-7, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26890339

RESUMO

We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes.

20.
Inorg Chem ; 54(16): 7846-56, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26218434

RESUMO

The Schiff-base proligand 4-tert-butyl-2,6-bis-[(2-hydroxy-phenylimino)methyl]phenol (H3L) was prepared in situ from 4-tert-butyl-2,6-diformylphenol and 2-aminophenol. The proligand (H3L) was used with dibenzoylmethane (DBMH) or acetylacetone (acacH) with lanthanides giving compounds with varying arrangements of metal atoms and nuclearities. The tetranuclear compound {[Dy4(L)3(DBM)4][Et3NH]} (1) and pentanuclear compound {[Dy5(µ3-OH)2(L)3(DBM)4(MeOH)4]·4(MeOH)} (2) were obtained from the ligand (L)(3-) and dibenzoylmethane. The tetranuclear compounds {[Dy4(µ4-OH)(L)2(acac)4(MeOH)2(EtOH)(H2O)]·(NO3)·2(MeOH)·3(EtOH)} (3) and {[Ln4(µ3-OH)2(L)(HL)(acac)5(H2O)] (HNEt3)(NO3)·2(Et2O)} (Ln = Tb (4), Dy (5), Ho (6), and Tm (7)) resulted when the ligand (L)(3-) was used in the presence of acetylacetone. In the solid state structures, the tetranuclear compound 1 adopts a linear arrangement of metal atoms, while tetranuclear compound 3 has a square grid arrangement of metal atoms, and tetranuclear compounds 4-7 have a seesaw-shaped arrangement of metal atoms. The composition found from single-crystal X-ray analysis of compound 1 and 3-7 is supported by electrospray ionization mass spectrometry (ESI-MS). The magnetic studies on compounds 1 suggest the presence of weak ferromagnetic interactions, whereas compounds 2-6 exhibit weak antiferromagnetic interactions between neighboring metal centers. Compounds 1, 2, and 3 also show single-molecule magnet behavior under an applied dc field.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa