Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proteins ; 92(5): 637-648, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38146101

RESUMO

Bacteriophages are the natural predators of bacteria and are available abundantly everywhere in nature. Lytic phages can specifically infect their bacterial host (through attachment to the receptor) and use their host replication machinery to replicate rapidly, a feature that enables them to kill a disease-causing bacteria. Hence, phage attachment to the host bacteria is the first important step of the infection process. It is reported in this study that the receptor could be an LPS which is responsible for the attachment of the Sfk20 phage to its host (Shigella flexneri 2a). Phage Sfk20 bacteriolytic activity was examined for preliminary optimization of phage titer. The phage Sfk20 viability at different saline conditions was conducted. The LC-MS/MS technique used here for detecting and identifying 40 Sfk20 phage proteins helped us to get an initial understanding of the structural landscape of phage Sfk20. From the identified proteins, six structurally significant proteins were selected for structure prediction using two neural network systems: AlphaFold2 and ESMFold, and one homology modeling software: Phyre2. Later the performance of these modeling systems was compared using various metrics. We conclude from the available and generated information that AlphaFold2 and Phyre2 perform better than ESMFold for predicting Sfk20 phage protein structures.


Assuntos
Bacteriófagos , Shigella , Bacteriófagos/genética , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bactérias
2.
BMC Microbiol ; 23(1): 324, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924001

RESUMO

BACKGROUND: Salmonella enterica serotype Typhi is one of the major pathogens causing typhoid fever and a public health burden worldwide. Recently, the increasing number of multidrug-resistant strains of Salmonella spp. has made this utmost necessary to consider bacteriophages as a potential alternative to antibiotics for S. Typhi infection treatment. Salmonella phage STWB21, isolated from environmental water, has earlier been reported to be effective as a safe biocontrol agent by our group. In this study, we evaluated the efficacy of phage STWB21 in reducing the burden of salmonellosis in a mammalian host by inhibiting Salmonella Typhi invasion into the liver and spleen tissue. RESULTS: Phage treatment significantly improved the survival percentage of infected mice. This study also demonstrated that oral administration of phage treatment could be beneficial in both preventive and therapeutic treatment of salmonellosis caused by S. Typhi. Altogether the result showed that the phage treatment could control tissue inflammation in mice before and after Salmonella infection. CONCLUSIONS: To the best of our knowledge, this is the first report of phage therapy in a mouse model against a clinically isolated Salmonella Typhi strain that includes direct visualization of histopathology and ultrathin section microscopy images from the liver and spleen sections.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções por Salmonella , Fagos de Salmonella , Febre Tifoide , Animais , Camundongos , Salmonella typhi , Carga Bacteriana , Febre Tifoide/terapia , Febre Tifoide/microbiologia , Infecções por Salmonella/terapia , Mamíferos
3.
Subcell Biochem ; 100: 269-336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301498

RESUMO

Glucose metabolism plays a vital role in regulating cellular homeostasis as it acts as the central axis for energy metabolism, alteration in which may lead to serious consequences like metabolic disorders to life-threatening diseases like cancer. Malignant cells, on the other hand, help in tumor progression through abrupt cell proliferation by adapting to the changed metabolic milieu. Metabolic intermediates also vary from normal cells to cancerous ones to help the tumor manifestation. However, metabolic reprogramming is an important phenomenon of cells through which they try to maintain the balance between normal and carcinogenic outcomes. In this process, transcription factors and chromatin modifiers play an essential role to modify the chromatin landscape of important genes related directly or indirectly to metabolism. Our chapter surmises the importance of glucose metabolism and the role of metabolic intermediates in the cell. Also, we summarize the influence of histone effectors in reprogramming the cancer cell metabolism. An interesting aspect of this chapter includes the detailed methods to detect the aberrant metabolic flux, which can be instrumental for the therapeutic regimen of cancer.


Assuntos
Glucose , Neoplasias , Humanos , Glucose/metabolismo , Glicólise/genética , Cromatina/genética , Neoplasias/metabolismo , Redes e Vias Metabólicas , Epigênese Genética
4.
FASEB J ; 35(9): e21814, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369624

RESUMO

Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes. Here we report that TCF19 interacts with a non-histone, well-known tumor suppressor protein 53 (p53) and co-regulates a wide array of metabolic genes. Among these, the p53-responsive carbohydrate metabolic genes Tp53-induced glycolysis and apoptosis regulator (TIGAR) and Cytochrome C Oxidase assembly protein 2 (SCO2), which are the key regulators of glycolysis and oxidative phosphorylation respectively, are under direct regulation of TCF19. Remarkably, TCF19 can form different transcription activation/repression complexes which show substantial overlap with that of p53, depending on glucose-mediated variant stress situations as obtained from IP/MS studies. Interestingly, we observed that TCF19/p53 complexes either have CBP or HDAC1 to epigenetically program the expression of TIGAR and SCO2 genes depending on short-term high glucose or prolonged high glucose conditions. TCF19 or p53 knockdown significantly altered the cellular lactate production and led to increased extracellular acidification rate. Similarly, OCR and cellular ATP production were reduced and mitochondrial membrane potential was compromised upon depletion of TCF19 or p53. Subsequently, through RNA-Seq analysis from patients with hepatocellular carcinoma, we observed that TCF19/p53-mediated metabolic regulation is fundamental for sustenance of cancer cells. Together the study proposes that TCF19/p53 complexes can regulate metabolic gene expression programs responsible for mitochondrial energy homeostasis and stress adaptation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mitocôndrias/genética , Chaperonas Moleculares/genética , Monoéster Fosfórico Hidrolases/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/genética , Adaptação Biológica/genética , Apoptose/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Glucose/genética , Células Hep G2 , Homeostase/genética , Humanos , Potencial da Membrana Mitocondrial/genética , Estresse Fisiológico/genética , Ativação Transcricional/genética
5.
Biochem J ; 477(19): 3803-3818, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32926159

RESUMO

hTERT, the catalytic component of the human telomerase enzyme, is regulated by post-translational modifications, like phosphorylation and ubiquitination by multiple proteins which remarkably affects the overall activity of the enzyme. Here we report that hTERT gets SUMOylated by SUMO1 and polycomb protein CBX4 acts as the SUMO E3 ligase of hTERT. hTERT SUMOylation positively regulates its telomerase activity which can be inhibited by SENP3-mediated deSUMOylation. Interestingly, we have established a new role of hTERT SUMOylation in the repression of E-cadherin gene expression and consequent triggering on the epithelial-mesenchymal-transition (EMT) program in breast cancer cells. We also observed that catalytically active CBX4, leads to retention of hTERT/ZEB1 complex onto E-cadherin promoter leading to its repression through hTERT-SUMOylation. Further through wound healing and invasion assays in breast cancer cells, we showed the tumor promoting ability of hTERT was significantly compromised upon overexpression of SUMO-defective mutant of hTERT. Thus our findings establish a new post-translational modification of hTERT which on one hand is involved in telomerase activity maintenance and on the other hand plays a crucial role in the regulation of gene expression thereby promoting migration and invasion of breast cancer cells.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Movimento Celular , Ligases/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Telomerase/metabolismo , Transcrição Gênica , Antígenos CD/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/genética , Feminino , Células HeLa , Humanos , Ligases/genética , Células MCF-7 , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas do Grupo Polycomb/genética , Telomerase/genética
6.
Biochemistry ; 59(4): 389-399, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31746185

RESUMO

Transcription factor 19 (TCF19) plays critical roles in type 1 diabetes and the maintenance of pancreatic ß cells. Recent studies have also implicated TCF19 in cell proliferation of hepatic carcinoma and non-small cell lung carcinoma; however, the mechanism underlying this regulation remains elusive. At the molecular level, TCF19 contains two modules, the plant homeodomain (PHD) finger and the forkhead-associated (FHA) domain, of unclear function. Here, we show that TCF19 mediates hepatocellular carcinoma HepG2 cell proliferation through its PHD finger that recognizes trimethylated lysine 4 of histone 3 (H3K4me3). W316 of the PHD finger of TCF19 is one of the critical residues eliciting this function. Whole genome microarray analysis and orthogonal cell-based assays identified a large subset of genes involved in cell survival and proliferation that depend on TCF19. Our data suggest that TCF19 acts as a pro-oncogene in hepatocellular carcinoma cells and that its functional PHD finger is critical in cell proliferation.


Assuntos
Histonas/metabolismo , Fatores de Transcrição/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células Hep G2 , Código das Histonas , Histonas/genética , Humanos , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Metilação , Modelos Moleculares , Dedos de Zinco PHD/fisiologia , Ligação Proteica , Fatores de Transcrição/fisiologia
7.
Carcinogenesis ; 41(12): 1767-1780, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32386317

RESUMO

Previously, our laboratory demonstrated that a deregulated E2F5/p38/SMAD3 axis was associated with uncontrolled cellular proliferation in prostate cancer (PCa). Here, we investigate the role of E2F5 in PCa in further details. RNAi-mediated E2F5 knockdown and pathway-focused gene expression profiling in PC3 cells identified TFPI2 as a downstream target of E2F5. Manipulation of E2F5 expression was also found to alter MMP-2 and MMP-9 levels as detected by Proteome Profiler array, western blot and reverse transcription coupled quantitative polymerase chain reaction Site-directed mutagenesis, dual-luciferase assays and chromatin immunoprecipitation with anti-E2F5-IgG coupled with qPCR confirmed recruitment of E2F5 on TFPI2, MMP-2 and MMP-9 promoters. RNAi-mediated knockdown of E2F5 expression in PC3 caused a significant alteration of cell migration while that of TFFI2 resulted in a modest change. Abrogation of E2F5 and TFPI2 expression was associated with significant changes in the gelatinolytic activity of active forms of MMP-2 and MMP-9. Moreover, E2F5, MMP-2 and MMP-9 levels were elevated in biopsies of PCa patients relative to that of benign hyperplasia, while TFPI2 expression was reduced. MMP-9 was coimmunoprecipitated with anti-TFPI2-IgG in PCa tissue samples suggesting a direct interaction between the proteins. Finally, artemisinin treatment in PC3 cells repressed E2F5 along with MMP-2/MMP-9 while triggering TFPI2 expression which alleviated PC3 aggressiveness possibly through inhibition of MMP activities. Together, our study reinstates an oncogenic role of E2F5 which operates as a dual-function transcription factor for its targets TFPI2, MMP-2 and MMP-9 and promotes cellular invasiveness. This study also indicates a therapeutic potential of artemisinin, a natural compound which acts by correcting dysfunctional E2F5/TFPI2/MMP axis in PCa.


Assuntos
Biomarcadores Tumorais/metabolismo , Fator de Transcrição E2F5/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Próstata/patologia , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Fator de Transcrição E2F5/genética , Glicoproteínas/genética , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Invasividade Neoplásica , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas
8.
Development ; 143(21): 4085-4094, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27697903

RESUMO

A limited number of signaling pathways are repeatedly used to regulate a wide variety of processes during development and differentiation. The lack of tools to manipulate signaling pathways dynamically in space and time has been a major technical challenge for biologists. Optogenetic techniques, which utilize light to control protein functions in a reversible fashion, hold promise for modulating intracellular signaling networks with high spatial and temporal resolution. Applications of optogenetics in multicellular organisms, however, have not been widely reported. Here, we create an optimized bicistronic optogenetic system using Arabidopsis thaliana cryptochrome 2 (CRY2) protein and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). In a proof-of-principle study, we develop an optogenetic Raf kinase that allows reversible light-controlled activation of the Raf/MEK/ERK signaling cascade. In PC12 cells, this system significantly improves light-induced cell differentiation compared with co-transfection. When applied to Xenopus embryos, this system enables blue light-dependent reversible Raf activation at any desired developmental stage in specific cell lineages. Our system offers a powerful optogenetic tool suitable for manipulation of signaling pathways with high spatial and temporal resolution in a wide range of experimental settings.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Optogenética/métodos , Fosfotransferases/metabolismo , Animais , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos/química , Criptocromos/genética , Luz , Sistema de Sinalização das MAP Quinases , Células PC12 , Fosforilação , Fosfotransferases/genética , Ratos , Transdução de Sinais , Transgenes , Xenopus , Quinases raf/metabolismo
9.
ACS Infect Dis ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938101

RESUMO

A newly discovered E3 ubiquitin ligase, UBR7, plays a crucial role in histone H2BK120 monoubiquitination. Here, we report a novel function of UBR7 in promoting hepatitis B virus (HBV) pathogenesis, which further leads to HBV-induced hepatocellular carcinoma (HCC). Transcriptomics analysis from HCC patients revealed the deregulation of UBR7 in cancer. Remarkably, targeting UBR7, particularly its catalytic function, led to a significant decrease in viral copy numbers. We also identified the speckled family protein Sp110 as an important substrate of UBR7. Notably, Sp110 has been previously shown to be a resident of promyelocytic leukemia nuclear bodies (PML-NBs), where it remains SUMOylated, and during HBV infection, it undergoes deSUMOylation and exits the PML body. We observed that UBR7 ubiquitinates Sp110 at critical residues within its SAND domain. Sp110 ubiquitination downregulates genes in the type I interferon response pathway. Comparative analysis of RNA-Seq from the UBR7/Sp110 knockdown data set confirmed that the IFN-ß signaling pathway gets deregulated in HCC cells in the presence of HBV. Single-cell RNA-Seq analysis of patient samples further confirmed the inverse correlation between the expression of Sp110/UBR7 and the inflammation score. Notably, silencing of UBR7 induces IRF7 phosphorylation, thereby augmenting interferon (IFN)-ß and the downstream interferon-stimulated genes (ISGs). Further, wild-type but not the ubiquitination-defective mutant of Sp110 could be recruited to the type I interferon response pathway genes. Our study establishes a new function of UBR7 in non-histone protein ubiquitination, promoting viral persistence, and has important implications for the development of therapeutic strategies targeting HBV-induced HCC.

10.
Oncogene ; 43(23): 1727-1741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719949

RESUMO

Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes e Vias Metabólicas/genética
11.
RSC Adv ; 13(5): 3394-3401, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756431

RESUMO

An AIE (aggregation induced emission) active probe DFP-AMQ was designed and synthesized as a hexa-coordinated N2O donor chelator for the selective sensing of Al3+ colorimetrically as well as fluorimetrically with a 27-fold fluorescence enhancement for CH3CN-H2O (9 : 1, v/v, pH 7.2, HEPES buffer). The fluorescence enhancement occurred through the blocking of ESIPT, chelation enhanced fluorescence effect (CHEF) arose, and as a result fluorescence enhancement was observed through 1 : 1 complexation with Al3+ ions. Detailed spectroscopic studies including UV-Vis, FTIR, 1H NMR, and HRMS studies were carried out to characterize the probable structure of DFP-AMQ including the complexation of DFP-AMQ with Al3+ ions. The spectrophotometric and spectrofluorimetric titrations revealed strong binding towards Al3+ and the K d values were obtained from UV-Vis (3.26 × 10-5 M-1) and fluorescence titration (2.02 × 10-5 M-1). The limit of detection of Al3+ by DFP-AMQ was 1.11 µM. The quantum yields of DFP-AMQ and [DFP-AMQ-Al]+ were calculated to be 0.008 and 0.211, respectively. Dynamic light scattering (DLS) studies showed that the sizes of the particles increased with increasing water percentage due to aggregation. SEM (scanning electron microscopy) studies revealed interesting morphological changes in microstructures in which DFP-AMQ demonstrated a rod-like shape, which was converted to a spherical-like shape in the presence of Al3+ and when DFP-AMQ aggregated in H2O it showed aggregated block-like shape. In the solid phase, DFP-AMQ with nitrate has no particular shape, but in the presence of acetate, it converts to stone-like shape. This probe (DFP-AMQ) could be employed for on-site Al3+ ion detection in the solid state.

12.
Nanoscale ; 15(37): 15288-15297, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681636

RESUMO

Single-source white light emitting colloidal semiconductor quantum dots (QDs) is one of the most exciting and promising high-quality solid-state light sources to meet the current global demand for sustainable resources. While most of the previous methods involve dual (green-red) emissive nanostructures coated on blue LEDs to achieve white light, this work describes a single-source white light emitter of robust and superior quality using dual-doping. A modified synthesis method for intense white light emitting Cu, Mn dual-doped ZnSe QDs is engineered such that the extent of doping and concentration of ligands can alter their electronic structures. This is then customized to obtain various types of white light emissions ranging from warm white to cool white. Further, the composition-driven change in the electronic structure of the host QDs is exploited to achieve emission tunability over the entire visible range.

13.
Autophagy ; 19(11): 3026-3028, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37115099

RESUMO

ABBREVIATIONS: AMPK, AMP-activated protein kinase; BioID, biotinylation identification; CBFB, core-binding factor subunit beta; HCQ, hydroxychloroquine; HNRNPK, heterogeneous nuclear ribonucleoprotein K; PDX, patient-derived xenograft; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; TUFM, Tu translation elongation factor, mitochondrial; ETC, electron transport chain.


Assuntos
Autofagia , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Mitocôndrias/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo
14.
Cancer Res ; 83(5): 657-666, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36661847

RESUMO

Therapy resistance is imposing a daunting challenge on effective clinical management of breast cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of different signaling networks and activation of DNA damage response pathways. Here we consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-DNA repair axis that can be critical for devising novel, targeted therapeutic approaches that could sensitize cancer cells to conventional treatment strategies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Reparo do DNA , Dano ao DNA , Epigênese Genética
15.
J Phys Chem Lett ; 13(8): 1952-1961, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35188398

RESUMO

Luminescent Cu-doped semiconductor nanocrystals have played a pivotal role in the emergence of lighting and display applications for a long time. However, consensus regarding the Cu oxidation state and hence their emission mechanism has not been attained. Distinction between seemingly simple optically and magnetically active Cu2+ and inactive Cu1+ has surprisingly been the subject matter of debate in the literature for more than a decade. In this Perspective, we first discuss the fundamental quantum mechanical phenomenon explaining the optical properties of the monovalent and divalent Cu dopants. We then focus down on various techniques used to differentiate between these two fundamental mechanisms, their benefits, and their pitfalls arising in large part because of the lack of spatial separation. Hence, to obtain a cohesive story consistent with all the observations, we discuss recent results from single-molecule spectroscopy to understand the optical properties and hence the oxidation state of internally doped Cu in doped nanocrystals.

16.
Autophagy ; 18(2): 449-451, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34781816

RESUMO

Mitochondria are critical organelles that maintain cellular metabolism and overall function. The catabolic pathway of autophagy plays a central role in recycling damaged mitochondria. Although the autophagy pathway is indispensable for some cancer cell survival, our latest study shows that rare autophagy-dependent cancer cells can adapt to loss of this core pathway. In the process, the autophagy-deficient cells acquire unique dependencies on alternate forms of mitochondrial homeostasis. These rare autophagy-deficient clones circumvent the lack of canonical autophagy by increasing mitochondrial dynamics and by recycling damaged mitochondria via mitochondrial-derived vesicles (MDVs). These studies are the first to implicate MDVs in cancer cell metabolism although many unanswered questions remain about this non-canonical pathway.


Assuntos
Mitofagia , Neoplasias , Autofagia , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neoplasias/metabolismo , Organelas/metabolismo
17.
Appl Biochem Biotechnol ; 194(11): 5474-5505, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35789986

RESUMO

The enzymatic and bio-enzymatic saccharification of waste broken rice (79.8% of starch) was successfully carried out to produce a reducible sugar solution (160 g/L). Bioethanol of concentration 71.2 g/L (9.0% v/v) was prepared by fermentation of reducing sugar solution, using the commercially available waste brewer's yeast (Saccharomyces cerevisiae). The fermentation process parameters were optimized through response surface methodology (RSM) and hybrid artificial neural network-genetic algorithm (ANN-GA) for optimizing the ethanol concentration. The hybrid ANN-GA model predicted a maximum concentration of 71.9 g/L with a deviation of only 0.97% from the experimental value (71.2 g/L). Four different kinetic models were attempted to fit the experimental time evolution of concentrations with the kinetic parameters estimated by the Levenberg-Marquardt optimization technique. The 4th order Runge-Kutta algorithm was implemented through a C program module. The accuracy of each model was checked against coefficient of determination R2, adjusted R2, the absolute mean deviation (AMD), and root mean square deviation (RMSD). The Andrew-Levenspiel kinetics produced the best performance criteria at two initial substrate concentrations of 160 and 170 g/L. Finally, the FTIR analysis of 781.2 g/L (98.5% v/v) bioethanol (concentrated by two-stage vacuum distillation followed by treatment with 3A molecular sieve) showed a favorable blending possibility with the commercial gasoline (petrol) as a green fuel.


Assuntos
Oryza , Cinética , Gasolina , Etanol , Saccharomyces cerevisiae , Amido , Carboidratos , Açúcares
18.
Front Microbiol ; 13: 980025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071966

RESUMO

Salmonella is one of the common causal agents of bacterial gastroenteritis-related morbidity and mortality among children below 5 years and the elderly populations. Salmonellosis in humans is caused mainly by consuming contaminated food originating from animals. The genus Salmonella has several serovars, and many of them are recently reported to be resistant to multiple drugs. Therefore, isolation of lytic Salmonella bacteriophages in search of bactericidal activity has received importance. In this study, a Salmonella phage STWB21 was isolated from a lake water sample and found to be a novel lytic phage with promising potential against the host bacteria Salmonella typhi. However, some polyvalence was observed in their broad host range. In addition to S. typhi, the phage STWB21 was able to infect S. paratyphi, S. typhimurium, S. enteritidis, and a few other bacterial species such as Sh. flexneri 2a, Sh. flexneri 3a, and ETEC. The newly isolated phage STWB21 belongs to the Siphoviridae family with an icosahedral head and a long flexible non-contractile tail. Phage STWB21 is relatively stable under a wide range of pH (4-11) and temperatures (4°C-50°C) for different Salmonella serovars. The latent period and burst size of phage STWB21 against S. typhi were 25 min and 161 plaque-forming units per cell. Since Salmonella is a foodborne pathogen, the phage STWB21 was applied to treat a 24 h biofilm formed in onion and milk under laboratory conditions. A significant reduction was observed in the bacterial population of S. typhi biofilm in both cases. Phage STWB21 contained a dsDNA of 112,834 bp in length, and the GC content was 40.37%. Also, genomic analysis confirmed the presence of lytic genes and the absence of any lysogeny or toxin genes. Overall, the present study reveals phage STWB21 has a promising ability to be used as a biocontrol agent of Salmonella spp. and proposes its application in food industries.

19.
FEBS J ; 289(7): 1842-1857, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739193

RESUMO

Monoubiquitination of histone H2B at lysine 120 plays a vital role in active transcription and DNA damage response pathways. Ubiquitin protein ligase E3 component N-recognin 7 (UBR7) has been recently identified as an H2BK120 monoubiquitin ligase. However, the molecular details of its ubiquitin transfer mechanism are not well understood. Here, we report that the plant homeodomain (PHD) finger of UBR7 is essential for its association with E2 UbcH6 and consequent ubiquitin transfer to its substrate histone H2B. We also identified the critical region of UbcH6 involved in this function and shown that the residues stretching from 114 to 125 of histone H2B C-terminal tail are sufficient for UBR7/UbcH6-mediated ubiquitin transfer. We also employed antibody-independent mass spectrometry to confirm UBR7-mediated ubiquitination of the H2B C-terminal tail. We demonstrated that the PHD finger of UBR7 forms a dimer and this dimerization is essential for ubiquitination of histone H2B. We mapped the critical residues involved in the dimerization and mutation of these residues that abrogate E3 ligase activity and are associated with cancer. Furthermore, we compared the mode of ubiquitin discharge from UbcH6 mediated by UBR7 and RING finger protein 20 (RNF20) through a thioester hydrolysis assay. Interestingly, binding of substrate H2B to UBR7 induces a conformational change in the PHD finger, which triggers ubiquitin transfer from UbcH6. However, the RNF20 RING finger alone is sufficient to promote the release of ubiquitin from UbcH6. Overall, the mechanism of ubiquitin transfer by the newly identified E3 ubiquitin ligase UBR7 is markedly different from that of RNF20.


Assuntos
Histonas , Ubiquitina , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Dedos de Zinco PHD/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
FEBS J ; 289(21): 6694-6713, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35653238

RESUMO

Hepatitis B virus (HBV) is the leading cause of liver disease ranging from acute and chronic hepatitis to liver cirrhosis and hepatocellular carcinoma (HCC). Studies have revealed that HBV infection broadly reprogrammes the host cellular metabolic processes for viral pathogenesis. Previous reports have shown that glycolysis and gluconeogenesis are among the most deregulated pathways during HBV infection. We noted that despite being one of the rate-limiting enzymes of gluconeogenesis, the role and regulation of Fructose-1,6-bisphosphatase 1 (FBP1) during HBV infection is not much explored. In this study, we report FBP1 upregulation upon HBV infection and unravel a novel mechanism of epigenetic reprogramming of FBP1 by HBV via utilizing host factor Speckled 110 kDa (Sp110). Here, we identified acetylated lysine 18 of histone H3 (H3K18Ac) as a selective interactor of Sp110 Bromodomain. Furthermore, we found that Sp110 gets recruited on H3K18Ac-enriched FBP1 promoter, and facilitates recruitment of deacetylase Sirtuin 2 (SIRT2) on that site in the presence of HBV. SIRT2 in turn brings its interactor and transcriptional activator Hepatocyte nuclear factor 4-alpha to the promoter, which ultimately leads to a loss of DNA methylation near the cognate site. Interestingly, this Sp110 driven FBP1 regulation during infection was found to promote viral-borne HCC progression. Moreover, Sp110 can be used as a prognostic marker for the hepatitis-mediated HCC patients, where high Sp110 expression significantly lowered their survival. Thus, the epigenetic reader protein Sp110 has potential to be a therapeutic target to challenge HBV-induced HCCs.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Epigênese Genética , Frutose , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Hepatite B/complicações , Hepatite B/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Neoplasias Hepáticas/patologia , Sirtuína 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa