Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 651, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962644

RESUMO

BACKGROUND: Different morphological structures of hairs having properties like defense and camouflage help animals survive in the wild environment. Horse is one of the rare kinds of animals with complex hair phenotypes in one individual; however, knowledge of horse hair follicle is limited in literature and their molecular basis remains unclear. Therefore, the investigation of horse hair follicle morphogenesis and pigmentogenesis attracts considerable interest. RESULT: Histological studies revealed the morphology and pigment synthesis of hair follicles are different in between four different parts (mane, dorsal part, tail, and fetlock) of the bay Mongolian horse. Hair follicle size, density, and cycle are strongly associated with the activity of alkaline phosphatase (ALP). We observed a great difference in gene expression between the mane, tail, and fetlock, which had a greater different gene expression pattern compared with the dorsal part through transcriptomics. The development of the hair follicle in all four parts was related to angiogenesis, stem cells, Wnt, and IGF signaling pathways. Pigmentogenesis-related pathways were involved in their hair follicle pigment synthesis. CONCLUSIONS: Hair follicle morphology and the activity of ALP differ among four body parts in bay Mongolian horse. Hair follicles of the different body parts of the are not synchronized in their cycle stages. GO terms show a regional specificity pattern between different skin parts of the bay Mongolian horse. These results provide an insight into the understanding of the biological mechanism of the hair follicle in other mammals.


Assuntos
Folículo Piloso/metabolismo , Cavalos/genética , Transcriptoma , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Folículo Piloso/citologia , Especificidade de Órgãos , Pigmentação da Pele
2.
Yi Chuan ; 40(5): 357-368, 2018 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-29785944

RESUMO

Mammalian coat color is one of the first phenotypic changes resulting from positive selection by humans, and it serves important roles in genetic and evolutionary processes. Among them, horses show a broad variety of coat color patterns, based on which it is difficult to distinguish the real phenotypes, resulting in confused records in horse breed registration. Thus, research in the genetic mechanisms on the development of coat color patterns is significant in horse reproduction and breeding. With the recent establishment of genomics and sequencing technologies, there are significant advances in research in the genetics of horse coat colors, which demonstrate that special coat colors could be associated with certain diseases. In this review, we classify horse coat colors from the perspective of genetics, and summarize the recent research progresses of the associated genes and molecular mechanisms on horse coat color development and its application, thereby providing references to further systematic research on horse coat color patterns and their practical uses in horse breeding.


Assuntos
Pelo Animal/química , Cavalos/genética , Pelo Animal/metabolismo , Animais , Cruzamento , Cor , Cavalos/metabolismo , Fenótipo
3.
Artigo em Inglês | MEDLINE | ID: mdl-34823143

RESUMO

The heterogeneity and plasticity of muscle fibers are essential for the athletic performance of horses, mainly at the adaption of exercises and the effect on muscle diseases. Skeletal muscle fibers can be generally distinguished by their characteristics of contraction as slow and fast type myofibers. The diversity of contractile properties and metabolism enable skeletal muscles to respond to the variable functional requirements. We investigated the muscle fiber composition and metabolic enzyme activities of splenius muscle and gluteus medius muscle from Mongolian horses. The deep RNA-seq analysis of detecting differentially expressed mRNAs, lncRNAs, circRNAs and their correlation analysis from two muscles were performed. Splenius muscle and gluteus medius muscle from Mongolian horses showed a high divergence of myofiber compositions and metabolic enzyme activities. Corresponding to their phenotypic characteristics, 57 differentially expressed long noncoding RNAs and 12 differentially expressed circle RNAs were found between two muscles. The analysis results indicate multiple binding sites were detected in lncRNAs and circRNAs with myofiber-specific expressed miRNAs. Among which we found significant correlations between the above noncoding RNAs, miRNAs, their target genes, myofiber-specific developmental transcript factors, and sarcomere genes. We suggest that the ceRNA mechanism of differentially expressed noncoding RNAs by acting as miRNA sponges could be fine tuners in regulating skeletal muscle fiber composition and transition in horses, which will operate new protective measures of muscle disease and locomotor adaption for racehorses.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Redes Reguladoras de Genes , Cavalos/genética , MicroRNAs/genética , Fibras Musculares Esqueléticas/metabolismo , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-31869634

RESUMO

Skeletal muscle is the largest organ system in the mammalian body and plays a key role in locomotion of horses. Fast and slow muscle fibers have different abilities and functions to adapt to exercises. To investigate the RNA and miRNA expression profiles in the muscles with different muscle fiber compositions on Mongolian horses. We examined the muscle fiber type population and produced deep RNA sequencing for different parts of skeletal muscles. And chose two of them with the highest difference in fast and slow muscle fiber population (splenius and gluteus medius) for comparing the gene expression profile of slow and fast muscle fiber types. We identified a total of 275 differentially expressed genes (DEGs), and 11 differentially expressed miRNAs (DEmiRs). In addition, target gene prediction and alternative splicing analysis were also performed. Significant correlations were found between the differentially expressed gene, miRNAs, and alternative splicing events. The result indicated that differentially expressed muscle-specific genes and target genes of miRNAs might co-regulating the performance of slow and fast muscle fiber types in Mongolian horses.


Assuntos
Cavalos/genética , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Transcriptoma , Processamento Alternativo , Animais , Cavalos/fisiologia , Masculino , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa