Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808467

RESUMO

Rice (Oryza sativa L.) is one of the most important food crops, providing food for nearly half of the world population. Rice grain yields are affected by temperature changes. Temperature stresses, both low and high, affect male reproductive development, resulting in yield reduction. Thermosensitive genic male sterility (TGMS) rice is sterile at high temperature and fertile at low temperature conditions, facilitating hybrid production, and is a good model to study effects of temperatures on male development. Semithin sections of the anthers of a TGMS rice line under low (fertile) and high (sterile) temperature conditions showed differences starting from the dyad stage, suggesting that genes involved in male development play a role during postmeiotic microspore development. Using RNA sequencing (RNA-Seq), transcriptional profiling of TGMS rice panicles at the dyad stage revealed 232 genes showing differential expression (DEGs) in a sterile, compared to a fertile, condition. Using qRT-PCR to study expression of 20 selected DEGs using panicles of TGMS and wild type rice plants grown under low and high temperature conditions, revealed that six out of the 20 selected genes may be unique to TGMS, while the other 14 genes showed common responses to temperatures in both TGMS and wild-type rice plants. The results presented here would be useful for further investigation into molecular mechanisms controlling TGMS and rice responses to temperature alteration.

2.
Genes Genomics ; 40(7): 735-745, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29934808

RESUMO

Coconuts (Cocos nucifera L.) are divided by the height into tall and dwarf types. In many plants the short phenotype was emerged by mutation of the GA20ox gene encoding the enzyme involved in gibberellin (GA) biosynthesis. Two CnGA20ox genes, CnGA20ox1 and CnGA20ox2, were cloned from tall and dwarf types coconut. The sequences, gene structures and expressions were compared. The structure of each gene comprised three exons and two introns. The CnGA20ox1 and CnGA20ox2 genes consisted of the coding region of 1110 and 1131 bp, encoding proteins of 369 and 376 amino acids, respectively. Their amino acid sequences are highly homologous to GA20ox1 and GA20ox2 genes of Elaeis guineensis, but only 57% homologous to each other. However, the characteristic amino acids two histidines and one aspartic acid which are the two iron (Fe2+) binding residues, and arginine and serine which are the substrate binding residues of the dioxygenase enzyme in the 20G-FeII_Oxy domain involved in GA biosynthesis, were found in the active site of both enzymes. The evolutionary relationship of their proteins revealed three clusters in vascular plants, with two subgroups in dicots and three subgroups in monocots. This result confirmed that CnGA20ox was present as multi-copy genes, and at least two groups CnGA20ox1 and CnGA20ox2 were found in coconut. The nucleotide sequences of CnGA20ox1 gene in both coconut types were identical but its expression was about three folds higher in the leaves of tall coconut than in those of dwarf type which was in good agreement with their height. In contrast, the nucleotide sequences of CnGA20ox2 gene in the two coconut types were different, but the expression of CnGA20ox2 gene could not be detected in either coconut type. The promoter region of CnGA20ox1 gene was cloned, and the core promoter sequences and various cis-elements were found. The CnGA20ox1 gene should be responsible for the height in coconut, which is different from other plants because no mutation was present in CnGA20ox1 gene of dwarf type coconut.


Assuntos
Cocos/genética , Giberelinas/genética , Filogenia , Folhas de Planta/genética , Sequência de Bases/genética , Éxons/genética , Giberelinas/biossíntese , Fases de Leitura Aberta/genética , Fenótipo
3.
Protoplasma ; 252(1): 231-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25012031

RESUMO

Sugarcane (Saccharum officinale L.; Poaceae) is a sugar-producing plant widely grown in tropic. Being a glycophytic species, it is very sensitive to salt stress, and salinity severely reduces growth rate and cane yield. The studies investigating the regulation of salt defense metabolite-related genes in relation to final biochemical products in both susceptible and tolerant genotypes of sugarcane are largely lacking. We therefore investigated the expression levels of sugarcane shaggy-like kinase (SuSK), sucrose transporter (SUT), proline biosynthesis (pyrolline-5-carboxylate synthetase; P5CS), ion homeostasis (NHX1), and catalase (CAT2) mRNAs, and contents of Na(+), soluble sugar, and free proline in three sugarcane genotypes (A19 mutant, K88-92, and K92-80) when subjected to salt stress (200 mM NaCl). The relative expression levels of salt defense-related genes in salt-stressed plantlets of sugarcane cv. K88-92 were upregulated in relation to salt exposure times when compared with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as housekeeping gene. In addition, final biochemical products, i.e., low Na(+), sucrose enrichment, and free proline accumulation, were evidently demonstrated in salt-stressed plantlets. Chlorophyll b, total chlorophyll, total carotenoid concentrations, and maximum quantum yield of PSII (F v/F m) in positive check (K88-92) were maintained under salt stress, leading to high net photosynthetic rate (P n) and growth retention (root length, fresh weight, and leaf area). In contrast, photosynthetic abilities in negative check, K92-80, and A19 mutant lines grown under salt stress declined significantly in comparison to control, leading to a reduction in P n and an inhibition of overall growth characters. The study concludes that the genetic background of sugarcane cv. K88-92 may further be exploited to play a key role as parental clone for sugarcane breeding program for salt-tolerant purposes.


Assuntos
Proteínas de Plantas/química , Saccharum/química , Cloreto de Sódio/farmacologia , Regulação da Expressão Gênica de Plantas , Genótipo , Fotossíntese
4.
Plant Physiol ; 144(3): 1383-90, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17535820

RESUMO

Nuclear pore complexes (NPCs) mediate the transport of RNA and other cargo between the nucleus and the cytoplasm. In vertebrates, the NPC protein TRANSLOCATED PROMOTER REGION (TPR) is associated with the inner filaments of the nuclear basket and is thought to serve as a scaffold for the assembly of transport machinery. In a screen for mutants that suppress the expression of the floral inhibitor FLOWERING LOCUS C, we identified lesions in the Arabidopsis (Arabidopsis thaliana) homolog of TPR (AtTPR). attpr mutants exhibit early-flowering and other pleiotropic phenotypes. A possible explanation for these developmental defects is that attpr mutants exhibit an approximately 8-fold increase in nuclear polyA RNA. Thus AtTPR is required for the efficient export of RNA from the nucleus. Microarray analysis shows that, in wild type, transcript abundance in the nuclear and total RNA pools are highly correlated; whereas, in attpr mutants, a significantly larger fraction of transcripts is enriched in either the nuclear or total pool. Thus AtTPR is required for homeostasis between nuclear and cytoplasmic RNA. We also show that the effects of AtTPR on small RNA abundance and auxin signaling are similar to that of two other NPC-associated proteins, HASTY (HST) and SUPPRESSOR OF AUXIN RESISTANCE3 (SAR3). This suggests that AtTPR, HST, and SAR3 may play related roles in the function of the nuclear pore.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , RNA de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Homeostase/fisiologia , Carioferinas/fisiologia , Proteínas de Domínio MADS/metabolismo , MicroRNAs/metabolismo , Mutação , Poro Nuclear/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Poli A/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa