Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(12): 6264-6285, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37191066

RESUMO

Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.


Assuntos
Quadruplex G , Neoplasias , Fotoquimioterapia , Animais , DNA/metabolismo , Dano ao DNA , Replicação do DNA , Instabilidade Genômica , Neoplasias/genética , Neoplasias/terapia , Estresse Oxidativo , Fármacos Fotossensibilizantes/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fotoquimioterapia/métodos
2.
Chemistry ; 30(27): e202400191, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38498874

RESUMO

Controlling the formation of photoexcited triplet states is critical for many (photo)chemical and physical applications. Here, we demonstrate that a permanent out-of-plane distortion of the benzothioxanthene imide (BTI) dye promotes intersystem crossing by increasing spin-orbit coupling. This manipulation was achieved through a subtle chemical modification, specifically the bay-area methylation. Consequently, this simple yet efficient approach expands the catalog of known molecular engineering strategies for synthesizing heavy atom-free, dual redox-active, yet still emissive and synthetically accessible photosensitizers.

3.
Photochem Photobiol Sci ; 23(1): 79-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066378

RESUMO

Singlet oxygen (1O2) mediated photo-oxidations are important reactions involved in numerous processes in chemical and biological sciences. While most of the current research works have aimed at improving the efficiencies of these transformations either by increasing 1O2 quantum yields or by enhancing its lifetime, we establish herein that immobilization of a molecular photosensitizer onto silica surfaces affords significant, substrate dependant, enhancement in the reactivity of 1O2. Probing a classical model reaction (oxidation of Anthracene-9, 10-dipropionic acid, ADPA or dimethylanthracene, DMA) with various spectrofluorimetric techniques, it is here proposed that an interaction between polar substrates and the silica surface is responsible for the observed phenomenon. This discovery could have a direct impact on the design of future photosensitized 1O2 processes in various applications ranging from organic photochemistry to photobiology.

4.
J Org Chem ; 88(10): 6498-6508, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36988615

RESUMO

Visible light photooxidation of naphthols to produce naphthoquinones, such as the natural product juglone, has been known for decades and has been widely utilized to benchmark the performances of a variety of photocatalytic systems. We discovered that these transformations can occur without the help of a photocatalyst and, even more intriguingly, that the photocatatyst-free process provides higher yields compared to control experiments utilizing state-of-the-art photocatalysts. In addition, we demonstrate that naphthoquinones and their corresponding naphthol precursors can act as alternatives to commonly used organic and organometallic photocatalysts with applications to challenging targets, such as the antimalarial drug artemisinin. This approach was finally transposed in continuous flow reactors where high photocatalyst stability and process efficiency are demonstrated with a 23× improvement in the space-time yield.

5.
Biomacromolecules ; 23(6): 2485-2495, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35608946

RESUMO

The (Z) and (E)-isomers of an extended tetraphenylethylene-based chromophore with optimized two-photon-induced luminescence properties are separated and functionalized with water-solubilizing pendant polymer groups, promoting their self-assembly in physiological media in the form of small, colloidal stable organic nanoparticles. The two resulting fluorescent suspensions are then evaluated as potential two-photon luminescent contrast agents for intravital epifluorescence and two-photon fluorescence microscopy. Comparisons with previously reported works involving similar fluorophores devoid of polymer side chains illustrate the benefits of later functionalization regarding the control of the self-assembly of the nano-objects and ultimately their biocompatibility toward the imaged organism.


Assuntos
Substâncias Luminescentes , Nanopartículas , Corantes Fluorescentes/química , Luminescência , Microscopia , Nanopartículas/química , Polímeros
6.
Anal Chem ; 93(5): 2926-2932, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33476133

RESUMO

We introduce a general and relatively straightforward protocol aimed at determining the absolute photoinduced radical generation efficiency via NMR monitoring. This approach relies on the use of a radical scavenger probe that combines a nitroxide moiety that specifically reacts with radicals and a trifluoromethyl group used as a 19F NMR signaling unit. Using an LED source, whose fluence is precisely determined by a chemical actinometry procedure also described herein, the method is used to determine the radical photogeneration quantum yields of three well-known polymerization initiators: azobisisobutyronitrile (AIBN), 4,4'-bis(N,N-diethylamino)benzophenone (BDEBP, a derivative of Michler's ethyl ketone), and 2,4,6-trimethylbenzoyl diphenylphosphine oxide (MAPO). The overall good agreement with values previously reported in the literature proves the robustness of this new method. We then extended the study to the precise measurement of the quantum yield of free-radical photogeneration on a newly synthesized photoinitiator used for two-photon direct laser writing. This study highlights the potential of this methodology for the quantitative determination of photoinduced radical generation efficiency used in many fields of applications.

7.
Chemistry ; 27(30): 8003-8007, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33769628

RESUMO

Although tetraphenylethylene (TPE) and its derivatives have been the most commonly used building blocks in the construction of molecules with aggregation-induced emission (AIE) properties, no absolute consensus exists regarding the mechanisms at the origin of the phenomenon. Restriction of intramolecular rotations (RIR) of peripheral phenyls has historically been a dominant paradigm, which has served as a valuable guideline in the molecular engineering of AIEgens. Yet, an increasing number of recent works have established that photoisomerization or photocyclization may actively participate in the nonradiative dissipation of the excitation energy. In this paper, the first experimental evaluation of the quantum efficiencies of these different processes is reported, and photoisomerization is shown to be by far the dominant photophysical pathway in solution, accounting for virtually all nonradiative decay of the molecule's excited state in degassed solution.

8.
Chemistry ; 27(34): 8704-8708, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33826178

RESUMO

The first metal-free procedure for the synthesis of arylsulfonyl fluorides is reported. Under organo-photoredox conditions, aryl diazonium salts react with a readily available SO2 source (DABSO) to afford the desired product through simple nucleophilic fluorination. The reaction tolerates the presence of both electron-rich and -poor aryls and demonstrated a broad functional group tolerance. To shed the light on the reaction mechanism, several experimental techniques were combined, including fluorescence, NMR, and EPR spectroscopy as well as DFT calculations.


Assuntos
Fluoretos , Metais , Catálise , Luz
9.
Chem Rec ; 21(2): 417-426, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33502093

RESUMO

This account highlights some of our recent work on photoinduced trifluoromethylselenolation reactions. This research program relies primarily on the design of a new key shelf-stable selenating reagent that can be involved in various radical processes In particular, we demonstrated that trifluoromethylselenolation of arenes, alkenes, alkynes as well as aliphatic organic building blocks can be readily achieved under visible-light irradiation. Mechanistic investigations based on 19 F NMR studies, EPR spectroscopy, cyclic voltammetry and luminescence studies allowed us to shed the light on the different proposed mechanisms in the designed methodologies. The applicative potential of these strategies was further demonstrated through the synthesis of bioactive analogue containing SeCF3 motif.

10.
Phys Chem Chem Phys ; 22(22): 12373-12381, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309827

RESUMO

In spite of their remarkable luminescence properties, benzothioxanthene imide (BTXI, an imide containing rylene chromophores) derivatives have been largely overlooked compared to their perylene bisimide and naphthalene bisimide counterparts. Thus, their detailed photophysics are much less understood. In this paper, we show how relatively simple structural modifications of the backbone of BTXIs can lead to impressive variations in their inter-system crossing kinetics. Thus, through rational engineering of their structure, it is possible to obtain a triplet formation quantum yield that reaches unity, making BTXI a promising class of compounds for triplet-based applications (photodynamic therapy, electroluminescence, etc.).

11.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138280

RESUMO

A current trend within photo-dynamic therapy (PDT) is the development of molecular systems targeting hypoxic tumors. Thus, type I PDT sensitizers could here overcome traditional type II molecular systems that rely on the photo-initiated production of toxic singlet oxygen. Here, we investigate the cell localization properties and toxicity of two polymeric anthracene-based fluorescent probes (neutral Ant-PHEA and cationic Ant-PIm). The cell death and DNA damage of Chinese hamster ovary cancer cells (CHO-K1) were characterized as combining PDT, cell survival studies (MTT-assay), and comet assay. Confocal microscopy was utilized on samples incubated together with either DRAQ5, Lyso Tracker Red, or Mito Tracker Deep Red in order to map the localization of the sensitizer into the nucleus and other cell compartments. While Ant-PHEA did not cause significant damage to the cell, Ant-PIm showed increased cell death upon illumination, at the cost of a significant dark toxicity. Both anthracene chromophores localized in cell compartments of the cytosol. Ant-PIm showed a markedly improved selectivity toward lysosomes and mitochondria, two important biological compartments for the cell's survival. None of the two anthracene chromophores showed singlet oxygen formation upon excitation in solvents such as deuterium oxide or methanol. Conclusively, the significant photo-induced cell death that could be observed with Ant-PIm suggests a possible type I PDT mechanism rather than the usual type II mechanism.


Assuntos
Fármacos Fotossensibilizantes/química , Polímeros/química , Animais , Antracenos/química , Linhagem Celular Tumoral , Cricetulus , Feminino , Neoplasias Ovarianas , Fotoquimioterapia , Oxigênio Singlete/química
12.
Chemistry ; 25(38): 9026-9034, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972809

RESUMO

Two trispicolinate 1,4,7-triazacyclonane (TACN)-based ligands bearing three picolinate biphotonic antennae were synthetized and their Yb3+ and Gd3+ complexes isolated. One series differs from the other by the absence (L1 )/presence (L2 ) of bromine atoms on the antenna backbone, offering respectively improved optical and singlet-oxygen generation properties. Photophysical properties of the ligands, complexes and micellar Pluronic suspensions were investigated. Complexes exhibit high two-photon absorption cross-section combined either with NIR emission (Yb) or excellent 1 O2 generation (Gd). The very large intersystem crossing efficiency induced by the combination of bromine atom and heavy rare-earth element was corroborated with theoretical calculations. The 1 O2 generation properties of L2 Gd micellar suspension under two-photon activation leads to tumour cell death, suggesting the potential of such structures for theranostic applications.

13.
Inorg Chem ; 58(12): 7730-7745, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31140791

RESUMO

Three new copper(I) complexes [Cu(LX)2]+(PF6-) (where LX stands for 2,9-dihalo-1,10-phenanthroline and X = Cl, Br, and I) have been synthesized in order to study the impact of halogen substituents tethered in the α position of the chelating nitrogen atoms on their physical properties. The photophysical properties of these new complexes (hereafter named Cu-X) were characterized in both their ground and excited states. Femtosecond ultrafast spectroscopy revealed that early photoinduced processes are faster for Cu-I than for Cu-Cl or Cu-Br, both showing similar behaviors. Their electronic absorption and electrochemical properties are comparable to benchmark [Cu(dmp)2]+ (where dmp stands for 2,9-dimethyl-1,10-phenanthroline); furthermore, their optical features were fully reproduced by time-dependent density functional theory and ab initio molecular dynamics calculations. All three complexes are luminescent at room temperature, showing that halogen atoms bound to positions 2 and 9 of phenanthroline are sufficiently bulky to prevent strong interactions between the excited Cu complexes and solvent molecules in the coordination sphere. Their behavior in the excited state, more specifically the extent of the photoluminescence efficiency and its dependence on the temperature, is, however, strongly dependent on the nature of the halogen. A combination of ultrafast transient absorption spectroscopy, temperature-dependent steady-state fluorescence spectroscopy, and computational chemistry allows one to gain a deeper understanding of the behavior of all three complexes in their excited state.

14.
Angew Chem Int Ed Engl ; 57(36): 11781-11785, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29985549

RESUMO

The first visible-light-mediated synthesis of trifluoromethylselenolated arenes under metal-free conditions is reported. The use of an organic photocatalyst enables the trifluoromethylselenolation of arene diazonium salts using the shelf-stable reagent trifluoromethyl tolueneselenosulfonate at room temperature. The reaction does not require the presence of any additives and shows high functional-group tolerance, covering a very broad range of starting materials. Mechanistic investigations, including EPR spectroscopy, luminescence investigations, and cyclic voltammetry allow rationalization of the reaction mechanism.

15.
Biomacromolecules ; 18(12): 4022-4033, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29020442

RESUMO

One of the challenges of photodynamic therapy is to increase the penetration depth of light irradiation in the tumor tissues. Although two-photon excitation strategies have been developed, the two-photon absorption cross sections of clinically used photosensitizers are generally low (below 300 GM). Besides, photosensitizers with high cross section values are often non-water-soluble. In this research work, a whole family of photosensitizer-polymer conjugates was synthesized via the covalent binding of a photosensitizer with a relatively high cross section along a biocompatible copolymer chain. The resulting photosensitizer-polymer conjugates were water-soluble and could be imaged in cellulo by two-photon microscopy thanks to their high two-photon absorption cross sections (up to 2600 GM in water, in the NIR range). In order to explore the structure/photodynamic activity relationship of such macromolecular photosensitizers, the influence of the polymer size, photosensitizer density, and presence of charges along the polymer backbone was investigated (neutral, anionic, cationic, and zwitterionic conjugates were compared). The macromolecular photosensitizers were not cytotoxic in the absence of light irradiation. Their kinetics of cellular uptake in the B16-F10 melanoma cell line were followed by flow cytometry over 24 h. The efficiency of cell death upon photoactivation was found to be highly correlated to the cellular uptake in turn correlated to the global charge of the macromolecular photosensitizer which appeared as the determining structural parameter.


Assuntos
Morte Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Polímeros/química , Polímeros/farmacologia , Animais , Linhagem Celular Tumoral , Fluorescência , Substâncias Macromoleculares/farmacologia , Melanoma/tratamento farmacológico , Camundongos , Estrutura Molecular , Tamanho da Partícula , Fotoquimioterapia/métodos , Fótons , Relação Estrutura-Atividade
16.
Chemphyschem ; 17(14): 2128-36, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-26990918

RESUMO

Three boron diketonate chromophores with extended π-conjugated backbone were prepared and their spectroscopic features were investigated through a combined theoretical/experimental study. It was shown that these complexes, which undergo very large electronic reorganization upon photoexcitation, combine large two-photon absorption cross section with an emission energy and quantum efficiency in solution that is strongly dependent on solvent polarity. The strong positive influence of boron complexation on the magnitude of the two-photon absorption was clearly established, and it was shown that the two-photon absorption properties were dominated by the quadrupolar term. For one of the synthesized compounds, intense one- and two-photon-induced solid-state emission (fluorescence quantum yield of 0.65 with maximum wavelength of 610 nm) was obtained as a result of antiparallel J-aggregate crystal packing.

17.
Biomacromolecules ; 17(11): 3609-3618, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27696875

RESUMO

We report the synthesis, spectroscopy, and the DNA binding properties of a biocompatible, water-soluble, polycationic two-photon absorbing anthracenyl derivative (Ant-PIm) specifically designed for biorelated applications. Detailed insights into the Ant-PIm-DNA binding interaction are provided by using several spectroscopic approaches, including UV-vis absorption, circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR), steady-state, and time-resolved fluorescence techniques. Absorption and fluorescence quantitative data analysis show a strong Ant-PIm-duplex interaction with binding constants of Kf = 4.7 ± 0.2 × 105 M-1, 7.1 ± 0.3 × 105 M-1, and 1.0 ± 0.1 × 106 M-1 at 298, 304, and 310 K, respectively. Spectral changes observed upon DNA binding provide evidence for a complex formation with off-on fluorescence pattern, which can be related to two consecutive binding equilibria. Results of DNA binders displacement and iodide quenching experimental assays unambiguously point to the groove binding mode of Ant-PIm to the DNA-helicate. Thermodynamic and chemical denaturation studies suggest that long-range interactions of hydrophobic nature regulate the association of Ant-PIm with the biopolymer. The ionic strength dependence of the binding constant shows that electrostatic component has an important contribution to the overall Gibbs free energy. FTIR and CD data provide evidence of partial modification of the B-DNA secondary structure, while the increase in the melting temperature clearly indicates the enhancement of the thermal stability of the duplex. Furthermore, the two-photon absorption cross section spectrum determined using the two-photon excited fluorescence (TPEF) technique shows a strong 2PA maximum at 820 nm with a σ2 > 800 GM, which emphasizes the advantageous combination of biological and optical properties possessed by this positively charged bioprobe.


Assuntos
Antracenos/química , DNA/química , Corantes Fluorescentes/química , Cátions/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Soft Matter ; 12(48): 9749-9758, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27886321

RESUMO

We demonstrated recently that polyelectrolytes with cationic moieties along the chain and a single anionic head are able to form physical hydrogels due to the reversible nature of the head-to-body ionic bond. Here we generate a variety of such polyelectrolytes with various cationic moieties and counterion combinations starting from a common polymeric platform. We show that the rheological properties (shear modulus, critical strain) of the final hydrogels can be modulated over three orders of magnitude depending on the cation/anion pair. Our data fit remarkably well within a scaling model involving a supramolecular head-to-tail single file between cross-links, akin to the behaviour of pine-processionary caterpillar. This model allows the quantitative measure of the amount of counterion condensation from standard rheology procedure.

19.
Inorg Chem ; 55(19): 9586-9595, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27618579

RESUMO

A tris-cyclometalated iridium complex that bears two ligands functionalized by peripheral carbazole groups combines an intense solid state emission and a significant two-photon absorption cross section in the near-infrared. After incorporation into a physiological micellar suspension, it can be used for the intravital two-photon fluorescence microscopy of cerebral vasculature.


Assuntos
Carbazóis/química , Complexos de Coordenação/química , Corantes Fluorescentes/química , Irídio/efeitos da radiação , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Carbazóis/síntese química , Complexos de Coordenação/síntese química , Fluorescência , Corantes Fluorescentes/síntese química , Raios Infravermelhos , Microscopia Intravital , Irídio/química , Camundongos , Fótons
20.
Macromol Rapid Commun ; 36(1): 55-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25353390

RESUMO

Tuning the chain-end functionality of a short-chain cationic homopolymer, owing to the nature of the initiator used in the atom transfer radical polymerization (ATRP) polymerization step, can be used to mediate the formation of a gel of this poly(electrolyte) in water. While a neutral end group gives a solution of low viscosity, a highly homogeneous gel is obtained with a phosphonate anionic moiety, as characterized by rheometry and diffusion nuclear magnetic resonance (NMR). This novel type of supramolecular control over poly(electrolytic) gel formation could find potential use in a variety of applications in the field of electro-active materials.


Assuntos
Ácidos Fosforosos/síntese química , Polímeros/síntese química , Técnicas Eletroquímicas , Géis , Polimerização , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa