Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(1): 184, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937817

RESUMO

An ever-increasing amount of data on a person's daily functioning is being collected, which holds information to revolutionize person-centered healthcare. However, the full potential of data on daily functioning cannot yet be exploited as it is mostly stored in an unstructured and inaccessible manner. The integration of these data, and thereby expedited knowledge discovery, is possible by the introduction of functionomics as a complementary 'omics' initiative, embracing the advances in data science. Functionomics is the study of high-throughput data on a person's daily functioning, that can be operationalized with the International Classification of Functioning, Disability and Health (ICF).A prerequisite for making functionomics operational are the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. This paper illustrates a step by step application of the FAIR principles for making functionomics data machine readable and accessible, under strictly certified conditions, in a practical example. Establishing more FAIR functionomics data repositories, analyzed using a federated data infrastructure, enables new knowledge generation to improve health and person-centered healthcare. Together, as one allied health and healthcare research community, we need to consider to take up the here proposed methods.


Assuntos
Atividades Cotidianas , Humanos , Assistência Centrada no Paciente , Classificação Internacional de Funcionalidade, Incapacidade e Saúde
2.
Mem. Inst. Oswaldo Cruz ; 87(supl.3): 95-100, 1992.
Artigo em Inglês | LILACS | ID: lil-121082

RESUMO

Extensive chromosome size polymorphism in Plasmodium berghei in vivo mitotic multiplication. Size differences between homologous chromosomes mainly involve rearrangements in the subtelomeric regions while internal chromosomal regions are more conserved. Size differences are almost exclusively due to differences in the copy number of a 2.3 kb subtelomeric repeat unit. Not only deletion of 2.3 kb repeats occurs, but addition of new copies of this repeat sometimes results in the formation of enlarged chromosomes. Even chromosomes which originally lack 2.3 kb repeats, can acquire these during mitotic multiplication. In one karyotype mutant, 2.3 kb repeats were inserted within one of the original telomeres of chromosome 4, creating an internal stretch oftelomeric repeats. Chromosome translocation can contribute to chromosome size polymorphism as well We found a karyotype mutant in which chromosome 7 with a size of about 1.4 Mb is translocated to chromosome 13/14 with a size of about 3 Mb, resulting in a rearranged chromosome, which was shown to contain a junction between internal DNA sequences of chromosome 13/14 and subtelomeric 2.3 kb repeats of chromosome 7. In this mutant a new chromosome of 1.4 Mb is present which consists of part of chromosome 13/14


Assuntos
Deleção Cromossômica , Análise Mutacional de DNA , Mitose , Plasmodium berghei/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa