Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2221166120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155838

RESUMO

Pheromone communication is an essential component of reproductive isolation in animals. As such, evolution of pheromone signaling can be linked to speciation. For example, the evolution of sex pheromones is thought to have played a major role in the diversification of moths. In the crop pests Spodoptera littoralis and S. litura, the major component of the sex pheromone blend is (Z,E)-9,11-tetradecadienyl acetate, which is lacking in other Spodoptera species. It indicates that a major shift occurred in their common ancestor. It has been shown recently in S. littoralis that this compound is detected with high specificity by an atypical pheromone receptor, named SlitOR5. Here, we studied its evolutionary history through functional characterization of receptors from different Spodoptera species. SlitOR5 orthologs in S. exigua and S. frugiperda exhibited a broad tuning to several pheromone compounds. We evidenced a duplication of OR5 in a common ancestor of S. littoralis and S. litura and found that in these two species, one duplicate is also broadly tuned while the other is specific to (Z,E)-9,11-tetradecadienyl acetate. By using ancestral gene resurrection, we confirmed that this narrow tuning evolved only in one of the two copies issued from the OR5 duplication. Finally, we identified eight amino acid positions in the binding pocket of these receptors whose evolution has been responsible for narrowing the response spectrum to a single ligand. The evolution of OR5 is a clear case of subfunctionalization that could have had a determinant impact in the speciation process in Spodoptera species.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Mariposas/genética , Mariposas/metabolismo , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Atrativos Sexuais/metabolismo , Spodoptera/genética , Feromônios/genética , Feromônios/metabolismo
2.
Cell Mol Life Sci ; 78(19-20): 6593-6603, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34448011

RESUMO

The concept of reverse chemical ecology (exploitation of molecular knowledge for chemical ecology) has recently emerged in conservation biology and human health. Here, we extend this concept to crop protection. Targeting odorant receptors from a crop pest insect, the noctuid moth Spodoptera littoralis, we demonstrate that reverse chemical ecology has the potential to accelerate the discovery of novel crop pest insect attractants and repellents. Using machine learning, we first predicted novel natural ligands for two odorant receptors, SlitOR24 and 25. Then, electrophysiological validation proved in silico predictions to be highly sensitive, as 93% and 67% of predicted agonists triggered a response in Drosophila olfactory neurons expressing SlitOR24 and SlitOR25, respectively, despite a lack of specificity. Last, when tested in Y-maze behavioral assays, the most active novel ligands of the receptors were attractive to caterpillars. This work provides a template for rational design of new eco-friendly semiochemicals to manage crop pest populations.


Assuntos
Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Receptores Odorantes/metabolismo , Animais , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Proteínas de Insetos/metabolismo , Repelentes de Insetos/farmacologia , Aprendizado de Máquina , Odorantes , Feromônios/farmacologia , Olfato/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Spodoptera/metabolismo
3.
BMC Biol ; 19(1): 241, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34749730

RESUMO

BACKGROUND: The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS: We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS: Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.


Assuntos
Besouros , Gorgulhos , Animais , Comunicação Celular , Elementos de DNA Transponíveis/genética , Grão Comestível , Humanos , Gorgulhos/genética
4.
Mol Ecol ; 30(9): 2025-2039, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33687767

RESUMO

Palm trees are of immense economic, sociocultural, touristic, and patrimonial significance all over the world, and date palm-related knowledge, traditions, and practices are now included in UNESCOs list of the Intangible Cultural Heritage of Humanity. Of all the pests that infest these trees, the red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), is its primary enemy. The RPW is a category-1 quarantine insect pest that causes enormous economic losses in palm tree cultivation worldwide. The RPW synchronizes mass gathering on the palm tree for feeding and mating, regulated by a male-produced pheromone composed of two methyl-branched compounds, (4RS, 5RS)-4-methylnonan-5-ol (ferrugineol) and 4(RS)-methylnonan-5-one (ferrugineone). Despite the importance of odorant detection in long-range orientation towards palm trees, palm colonization, and mating, the pheromone receptor has not been identified in this species. In this study, we report the identification and characterization of the first RPW pheromone receptor, RferOR1. Using gene silencing and functional expression in Drosophila olfactory receptor neurons, we demonstrate that RferOR1 is tuned to ferrugineol and ferrugineone and binds five other structurally related molecules. We reveal the lifetime expression of RferOR1, which correlates with adult mating success irrespective of age, a factor that could explain the wide distribution and spread of this pest. As palm weevils are challenging to control based on conventional methods, elucidation of the mechanisms of pheromone detection opens new routes for mating disruption and the early detection of this pest via the development of pheromone receptor-based biosensors.


Assuntos
Gorgulhos , Animais , Masculino , Feromônios , Quarentena , Receptores de Feromônios , Árvores , Gorgulhos/genética
5.
J Evol Biol ; 34(11): 1704-1721, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34570954

RESUMO

Ecological speciation entails divergent selection on specific traits and ultimately on the developmental pathways responsible for these traits. Selection can act on gene sequences but also on regulatory regions responsible for gene expression. Mimetic butterflies are a relevant system for speciation studies because wing colour pattern (WCP) often diverges between closely related taxa and is thought to drive speciation through assortative mating and increased predation on hybrids. Here, we generate the first transcriptomic resources for a mimetic butterfly of the tribe Ithomiini, Melinaea marsaeus, to examine patterns of differential expression between two subspecies and between tissues that express traits that likely drive reproductive isolation; WCP and chemosensory genes. We sequenced whole transcriptomes of three life stages to cover a large catalogue of transcripts, and we investigated differential expression between subspecies in pupal wing discs and antennae. Eighteen known WCP genes were expressed in wing discs and 115 chemosensory genes were expressed in antennae, with a remarkable diversity of chemosensory protein genes. Many transcripts were differentially expressed between subspecies, including two WCP genes and one odorant receptor. Our results suggest that in M. marsaeus the same genes as in other mimetic butterflies are involved in traits causing reproductive isolation, and point at possible candidates for the differences in those traits between subspecies. Differential expression analyses of other developmental stages and body organs and functional studies are needed to confirm and expand these results. Our work provides key resources for comparative genomics in mimetic butterflies, and more generally in Lepidoptera.


Assuntos
Borboletas , Animais , Borboletas/genética , Perfilação da Expressão Gênica , Isolamento Reprodutivo , Transcriptoma , Asas de Animais
6.
BMC Biol ; 18(1): 90, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32698880

RESUMO

BACKGROUND: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.


Assuntos
Adaptação Biológica , Evolução Biológica , Genoma de Inseto/fisiologia , Hemípteros/genética , Adaptação Biológica/genética , Distribuição Animal , Animais , Espécies Introduzidas , Vitis
8.
BMC Genomics ; 21(1): 376, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471448

RESUMO

BACKGROUND: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS: We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS: These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.


Assuntos
Afídeos/genética , Genômica , Vespas/genética , Animais , Afídeos/imunologia , Metilação de DNA/genética , Sequência Rica em GC , Proteínas de Insetos/genética , Processos de Determinação Sexual/genética , Peçonhas/genética , Vespas/imunologia
9.
J Insect Sci ; 18(5)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247742

RESUMO

Sex pheromone communication in Lepidoptera has long been a valuable model system for studying fundamental aspects of olfaction and its study has led to the establishment of environmental-friendly pest control strategies. The cabbage moth, Mamestra brassicae (Linnaeus) (Lepidoptera: Noctuidae), is a major pest of Cruciferous vegetables in Europe and Asia. Its sex pheromone has been characterized and is currently used as a lure to trap males; however, nothing is known about the molecular mechanisms of sex pheromone reception in male antennae. Using homology cloning and rapid amplification of cDNA ends-PCR strategies, we identified the first candidate pheromone receptor in this species. The transcript was specifically expressed in the antennae with a strong male bias. In situ hybridization experiments within the antennae revealed that the receptor-expressing cells were closely associated with the olfactory structures, especially the long trichoid sensilla known to be pheromone-sensitive. The deduced protein is predicted to adopt a seven-transmembrane structure, a hallmark of insect odorant receptors, and phylogenetically clustered in a clade that grouped a majority of the Lepidoptera pheromone receptors characterized to date. Taken together, our data support identification of a candidate pheromone receptor and provides a basis for better understanding how this species detects a signal critical for reproduction.


Assuntos
Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Mariposas/genética , Receptores de Feromônios/genética , Atrativos Sexuais/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Insetos/metabolismo , Masculino , Mariposas/metabolismo , Filogenia , Receptores de Feromônios/metabolismo , Alinhamento de Sequência
10.
Chem Senses ; 42(4): 319-331, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334209

RESUMO

The detection of chemical signals is involved in a variety of crustacean behaviors, such as social interactions, search and evaluation of food and navigation in the environment. At hydrothermal vents, endemic shrimp may use the chemical signature of vent fluids to locate active edifices, however little is known on their sensory perception in these remote deep-sea habitats. Here, we present the first comparative description of the sensilla on the antennules and antennae of 4 hydrothermal vent shrimp (Rimicaris exoculata, Mirocaris fortunata, Chorocaris chacei, and Alvinocaris markensis) and of a closely related coastal shrimp (Palaemon elegans). These observations revealed no specific adaptation regarding the size or number of aesthetascs (specialized unimodal olfactory sensilla) between hydrothermal and coastal species. We also identified partial sequences of the ionotropic receptor IR25a, a co-receptor putatively involved in olfaction, in 3 coastal and 4 hydrothermal shrimp species, and showed that it is mainly expressed in the lateral flagella of the antennules that bear the unimodal chemosensilla aesthetascs.


Assuntos
Decápodes/fisiologia , Fontes Hidrotermais , Sensilas/fisiologia , Adaptação Fisiológica , Animais , Receptores Ionotrópicos de Glutamato/análise
11.
J Insect Sci ; 16(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27638948

RESUMO

Transient receptor potential (TRP) channels are an ancient family of cation channels, working as metabotropic triggers, which respond to physical and chemical environmental cues. Perception of chemical signals mediate reproductive behaviors and is therefore an important target for sustainable management tactics against the codling moth Cydia pomonella L. (Lepidoptera: Tortricidae). However, olfactory behavior strongly depends on diel periodicity and correlation of chemical with physical cues, like temperature, and physical cues thus essentially contribute to the generation of behavioral response. From an antennal transcriptome generated by next generation sequencing, we characterized five candidate TRPs in the codling moth. The coding DNA sequence of one of these was extended to full length, and phylogenetic investigation revealed it to be orthologous of the TRPA5 genes, reported in several insect genomes as members of the insect TRPA group with unknown function but closely related to the thermal sensor pyrexia Reverse transcription PCR revealed the existence of five alternate splice forms of CpTRPA5. Identification of a novel TRPA and its splice forms in codling moth antennae open for investigation of their possible sensory roles and implications in behavioral responses related to olfaction.


Assuntos
Anquirinas/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Mariposas/genética , Animais , Anquirinas/metabolismo , Antenas de Artrópodes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Filogenia , Isoformas de Proteínas/genética , Análise de Sequência de DNA
12.
Insect Sci ; 31(2): 489-502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37573259

RESUMO

In moths, pheromone receptors (PRs) are crucial for intraspecific sexual communication between males and females. Moth PRs are considered as an ideal model for studying the evolution of insect PRs, and a large number of PRs have been identified and functionally characterized in different moth species. Moth PRs were initially thought to fall into a single monophyletic clade in the odorant receptor (OR) family, but recent studies have shown that ORs in another lineage also bind type-I sex pheromones, which indicates that type-I PRs have multiple independent origins in the Lepidoptera. In this study, we investigated whether ORs of the pest moth Spodoptera frugiperda belonging to clades closely related to this novel PR lineage may also have the capacity to bind type-I pheromones and serve as male PRs. Among the 7 ORs tested, only 1 (SfruOR23) exhibited a male-biased expression pattern. Importantly, in vitro functional characterization showed that SfruOR23 could bind several type-I sex pheromone compounds with Z-9-tetradecenal (Z9-14:Ald), a minor component found in female sex pheromone glands, as the optimal ligand. In addition, SfruOR23 also showed weak responses to plant volatile organic compounds. Altogether, we characterized an S. frugiperda PR positioned in a lineage closely related to the novel PR clade, indicating that the type-I PR lineage can be extended in moths.


Assuntos
Mariposas , Receptores Odorantes , Atrativos Sexuais , Masculino , Feminino , Animais , Mariposas/metabolismo , Atrativos Sexuais/metabolismo , Spodoptera/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Feromônios , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo
13.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38404917

RESUMO

Sex pheromone recognition is essential for mating in many insects and plays a major role in maintaining reproductive barriers. A previous study from our lab reported the evolutionary history of the pheromone receptor OR5 in Spodoptera moths. Using heterologous expression in Xenopus oocytes and site-directed mutagenesis, we found that eight amino acid substitutions were sufficient to recapitulate the evolution from an ancestral broadly-tuned to a highly specific receptor. Here, we confirmed this result using expression in Drosophila olfactory neurons. This further confirmed that multiple amino acid changes explain the shift in tuning breadth of Spodoptera OR5 during evolution.

14.
Insect Biochem Mol Biol ; 169: 104129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704126

RESUMO

The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.


Assuntos
Receptores Odorantes , Gorgulhos , Animais , Gorgulhos/metabolismo , Gorgulhos/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Compostos Orgânicos Voláteis/metabolismo , Masculino , Filogenia , Feminino , Arecaceae/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Antenas de Artrópodes/metabolismo , Ésteres/metabolismo
15.
Front Mol Neurosci ; 16: 1182361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645702

RESUMO

The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The "empty neuron system" of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis, a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.

16.
Mol Ecol Resour ; 23(4): 872-885, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36533297

RESUMO

The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.


Assuntos
Borboletas , Animais , Borboletas/genética , Adaptação Fisiológica , Fenótipo , Genômica , Cromossomos/genética
17.
Eur J Neurosci ; 36(5): 2588-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22748123

RESUMO

Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.


Assuntos
Proteínas de Insetos/metabolismo , Receptores de Feromônios/metabolismo , Potenciais de Ação , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/fisiologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiologia , Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Dados de Sequência Molecular , Neurônios Receptores Olfatórios/fisiologia , Receptores de Feromônios/genética , Receptores de Feromônios/fisiologia , Sensilas/fisiologia , Atrativos Sexuais/farmacologia , Spodoptera
18.
Cell Tissue Res ; 350(2): 239-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22965226

RESUMO

The response of insect olfactory receptor neurons (ORNs) involves an increase in intracellular Ca(2+) concentration, as in vertebrate ORNs. In order to decipher the Ca(2+) clearance mechanisms in insect ORNs, we have investigated the presence of a plasma membrane Ca(2+) ATPase (PMCA) in the peripheral olfactory system of the moth Spodoptera littoralis. From an analysis of a male antennal expressed-sequence-tag database combined with a strategy of 5'/3' rapid amplification of cDNA ends plus the polymerase chain reaction, we have cloned a full-length cDNA encoding a PMCA. In adult males, the PMCA transcript has been found in various tissues, including the antennae in which its presence has been detected in the sensilla trichodea, and in cultured ORNs. The PMCA gene is slightly expressed at the end of the pupal stage, reaches a maximum at emergence and is maintained at a high level during the adult period. Taken together, these results provide, for the first time, molecular evidence for the putative participation of a PMCA in signalling pathways responsible for the establishment and functioning of the insect peripheral olfactory system.


Assuntos
Neurônios Receptores Olfatórios/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Spodoptera/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Transporte de Íons , Masculino , Neurônios Receptores Olfatórios/enzimologia , Oxirredução , ATPases Transportadoras de Cálcio da Membrana Plasmática/biossíntese , Spodoptera/citologia
19.
Naturwissenschaften ; 99(7): 537-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22729480

RESUMO

Mast syndrome is a complicated form of human hereditary spastic paraplegias, caused by a mutation in the gene acid cluster protein 33, which encodes a protein designated as "maspardin." Maspardin presents similarity to the α/ß-hydrolase superfamily, but might lack enzymatic activity and rather be involved in protein-protein interactions. Association with the vesicles of the endosomal network also suggested that maspardin may be involved in the sorting and/or trafficking of molecules in the endosomal pathway, a crucial process for maintenance of neuron health. Despite a high conservation in living organisms, studies of maspardin in other animal species than mammals were lacking. In the cotton armyworm Spodoptera littoralis, an insect pest model, analysis of an expressed sequence tag collection from antenna, the olfactory organ, has allowed identifying a maspardin homolog (SlMasp). We have investigated SlMasp tissue distribution and temporal expression by PCR and in situ hybridization techniques. Noteworthy, we found that maspardin was highly expressed in antennae and associated with the structures specialized in odorant detection. We have, in addition, identified maspardin sequences in numerous "nonmammalian" species and described here their phylogenetic analysis in the context of metazoan diversity. We observed a strong conservation of maspardin in metazoans, with surprisingly two independent losses of this gene in two relatively distant ecdysozoan taxa that include major model organisms, i.e., dipterans and nematodes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Filogenia , Spodoptera/enzimologia , Spodoptera/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/enzimologia , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Células Receptoras Sensoriais/enzimologia , Alinhamento de Sequência , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/genética , Spodoptera/classificação
20.
Biomolecules ; 12(3)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35327533

RESUMO

Sex pheromone receptors are crucial in insects for mate finding and contribute to species premating isolation. Many pheromone receptors have been functionally characterized, especially in moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the development of the macroglomeruli in the antennal lobe (the brain structures processing pheromone signals) is not known. Here, we used CRISPR-Cas9 to knock-out the receptor for the major component of the sex pheromone of the noctuid moth Spodoptera littoralis, and investigated the resulting effects on electrophysiological responses of peripheral pheromone-sensitive neurons and on the structure of the macroglomeruli. We show that the inactivation of the receptor specifically affected the responses of the corresponding antennal neurons did not impact the number of macroglomeruli in the antennal lobe but reduced the size of the macroglomerulus processing input from neurons tuned to the main pheromone component. We suggest that this mutant neuroanatomical phenotype results from a lack of neuronal activity due to the absence of the pheromone receptor and potentially reduced neural connectivity between peripheral and antennal lobe neurons. This is the first evidence of the role of a moth pheromone receptor in macroglomerulus development and extends our knowledge of the different functions odorant receptors can have in insect neurodevelopment.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Encéfalo/metabolismo , Mariposas/genética , Feromônios , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Atrativos Sexuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa