RESUMO
Weather-related disasters are increasing in frequency and severity, leaving survivors to cope with ensuing mental, financial, and physical hardships. This adversity can exacerbate existing morbidities, trigger new ones, and increase the risk of mortality-features that are also characteristic of advanced age-inviting the hypothesis that extreme weather events may accelerate aging. To test this idea, we examined the impact of Hurricane Maria and its aftermath on immune cell gene expression in large, age-matched, cross-sectional samples from free-ranging rhesus macaques (Macaca mulatta) living on an isolated island. A cross section of macaques was sampled 1 to 4 y before (n = 435) and 1 y after (n = 108) the hurricane. Hurricane Maria was significantly associated with differential expression of 4% of immune-cell-expressed genes, and these effects were correlated with age-associated alterations in gene expression. We further found that individuals exposed to the hurricane had a gene expression profile that was, on average, 1.96 y older than individuals that were not-roughly equivalent to an increase in 7 to 8 y of a human life. Living through an intense hurricane and its aftermath was associated with expression of key immune genes, dysregulated proteostasis networks, and greater expression of inflammatory immune cell-specific marker genes. Together, our findings illuminate potential mechanisms through which the adversity unleashed by extreme weather and potentially other natural disasters might become biologically embedded, accelerate age-related molecular immune phenotypes, and ultimately contribute to earlier onset of disease and death.
Assuntos
Envelhecimento/imunologia , Macaca/imunologia , Sobreviventes/psicologia , Fatores Etários , Animais , Estudos Transversais , Tempestades Ciclônicas , Desastres , Desastres Naturais/mortalidade , Fatores de RiscoRESUMO
Phenotypic aging is ubiquitous across mammalian species, suggesting shared underlying mechanisms of aging. Aging is linked to molecular changes to DNA methylation and gene expression, and environmental factors, such as severe external challenges or adversities, can moderate these age-related changes. Yet, it remains unclear whether environmental adversities affect gene regulation via the same molecular pathways as chronological, or 'primary', aging. Investigating molecular aging in naturalistic animal populations can fill this gap by providing insight into shared molecular mechanisms of aging and the effects of a greater diversity of environmental adversities - particularly those that can be challenging to study in humans or laboratory organisms. Here, we characterised molecular aging - specifically, CpG methylation - in a sample of free-ranging rhesus macaques living off the coast of Puerto Rico (n samples = 571, n individuals = 499), which endured a major hurricane during our study. Age was associated with methylation at 78,661 sites (31% of all sites tested). Age-associated hypermethylation occurred more frequently in areas of active gene regulation, while hypomethylation was enriched in regions that show less activity in immune cells, suggesting these regions may become de-repressed in older individuals. Age-associated hypomethylation also co-occurred with increased chromatin accessibility while hypermethylation showed the opposite trend, hinting at a coordinated, multi-level loss of epigenetic stability during aging. We detected 32,048 CpG sites significantly associated with exposure to a hurricane, and these sites overlapped age-associated sites, most strongly in regulatory regions and most weakly in quiescent regions. Together, our results suggest that environmental adversity may contribute to aging-related molecular phenotypes in regions of active gene transcription, but that primary aging has specific signatures in non-regulatory regions.
Assuntos
Envelhecimento , Ilhas de CpG , Metilação de DNA , Regulação da Expressão Gênica , Macaca mulatta , Animais , Metilação de DNA/genética , Macaca mulatta/genética , Envelhecimento/genética , Ilhas de CpG/genética , Porto Rico , Epigênese Genética , Meio Ambiente , MasculinoRESUMO
Ecological flexibility, extended lifespans, and large brains have long intrigued evolutionary biologists, and comparative genomics offers an efficient and effective tool for generating new insights into the evolution of such traits. Studies of capuchin monkeys are particularly well situated to shed light on the selective pressures and genetic underpinnings of local adaptation to diverse habitats, longevity, and brain development. Distributed widely across Central and South America, they are inventive and extractive foragers, known for their sensorimotor intelligence. Capuchins have among the largest relative brain size of any monkey and a lifespan that exceeds 50 y, despite their small (3 to 5 kg) body size. We assemble and annotate a de novo reference genome for Cebus imitator Through high-depth sequencing of DNA derived from blood, various tissues, and feces via fluorescence-activated cell sorting (fecalFACS) to isolate monkey epithelial cells, we compared genomes of capuchin populations from tropical dry forests and lowland rainforests and identified population divergence in genes involved in water balance, kidney function, and metabolism. Through a comparative genomics approach spanning a wide diversity of mammals, we identified genes under positive selection associated with longevity and brain development. Additionally, we provide a technological advancement in the use of noninvasive genomics for studies of free-ranging mammals. Our intra- and interspecific comparative study of capuchin genomics provides insights into processes underlying local adaptation to diverse and physiologically challenging environments, as well as the molecular basis of brain evolution and longevity.
Assuntos
Adaptação Fisiológica , Encéfalo/crescimento & desenvolvimento , Cebus/genética , Genoma , Longevidade/genética , Animais , Evolução Molecular , Citometria de Fluxo/métodos , Florestas , Genômica/métodosRESUMO
We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.
Assuntos
Chlorocebus aethiops/genética , Genoma , Genômica , Animais , Chlorocebus aethiops/classificação , Coloração Cromossômica , Biologia Computacional/métodos , Evolução Molecular , Rearranjo Gênico , Variação Genética , Genômica/métodos , Cariótipo , Complexo Principal de Histocompatibilidade/genética , Anotação de Sequência Molecular , Filogenia , FilogeografiaRESUMO
The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence pair bonding, attachment, and sociality, as well as anxiety and stress responses in humans and other mammals. The effects of these peptides are mediated by genetic variability in their associated receptors, OXTR and the AVPR gene family. However, the role of these genes in regulating social behaviors in non-human primates is not well understood. To address this question, we examined whether genetic variation in the OT receptor gene OXTR and the AVP receptor genes AVPR1A and AVPR1B influence naturally-occurring social behavior in free-ranging rhesus macaques-gregarious primates that share many features of their biology and social behavior with humans. We assessed rates of social behavior across 3,250 hr of observational behavioral data from 201 free-ranging rhesus macaques on Cayo Santiago island in Puerto Rico, and used genetic sequence data to identify 25 OXTR, AVPR1A, and AVPR1B single-nucleotide variants (SNVs) in the population. We used an animal model to estimate the effects of 12 SNVs (n = 3 OXTR; n = 5 AVPR1A; n = 4 AVPR1B) on rates of grooming, approaches, passive contact, contact aggression, and non-contact aggression, given and received. Though we found evidence for modest heritability of these behaviors, estimates of effect sizes of the selected SNVs were close to zero, indicating that common OXTR and AVPR variation contributed little to social behavior in these animals. Our results are consistent with recent findings in human genetics that the effects of individual common genetic variants on complex phenotypes are generally small.
Assuntos
Macaca mulatta/fisiologia , Receptores de Ocitocina/genética , Receptores de Vasopressinas/genética , Comportamento Social , Agressão , Animais , Comportamento Animal/fisiologia , Feminino , Genótipo , Asseio Animal , Macaca mulatta/genética , Masculino , Polimorfismo de Nucleotídeo Único , Porto RicoRESUMO
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (â¼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.
Assuntos
Adaptação Fisiológica/genética , Doença de Chagas , Interações Hospedeiro-Parasita/genética , Insetos Vetores , Rhodnius , Trypanosoma cruzi/fisiologia , Animais , Sequência de Bases , Transferência Genética Horizontal , Humanos , Insetos Vetores/genética , Insetos Vetores/parasitologia , Dados de Sequência Molecular , Rhodnius/genética , Rhodnius/parasitologia , Wolbachia/genéticaRESUMO
Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.
Assuntos
Animais Domésticos/genética , Animais Selvagens/genética , Gatos/genética , Genoma/genética , Genômica/métodos , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Animais , Carnivoridade , Gatos/classificação , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Cães , Feminino , Deleção de Genes , Duplicação Gênica , Masculino , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Filogenia , Seleção Genética/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da EspécieRESUMO
OBJECTIVES: Interpretations of the primate and human fossil record often rely on the estimation of somatic dimensions from bony measures. Both somatic and skeletal variation have been used to assess how primates respond to environmental change. However, it is unclear how well skeletal variation matches and predicts soft tissue. Here, we empirically test the relationship between tissues by comparing somatic and skeletal measures using paired measures of pre- and post-mortem rhesus macaques from Cayo Santiago, Puerto Rico. MATERIALS AND METHODS: Somatic measurements were matched with skeletal dimensions from 105 rhesus macaque individuals to investigate paired signals of variation (i.e., coefficients of variation, sexual dimorphism) and bivariate codependence (reduced major axis regression) in measures of: (1) limb length; (2) joint breadth; and (3) limb circumference. Predictive models for the estimation of soft tissue dimensions from skeletons were built from Ordinary Least Squares regressions. RESULTS: Somatic and skeletal measurements showed statistically equivalent coefficients of variation and sexual dimorphism as well as high epiphyses-present ordinary least square (OLS) correlations in limb lengths (R2 >0.78, 0.82), joint breadths (R2 >0.74, 0.83) and, to a lesser extent, limb circumference (R2 >0.53, 0.68). CONCLUSION: Skeletal measurements are good substitutions for somatic values based on population signals of variation. OLS regressions indicate that skeletal correlates are highly predictive of somatic dimensions. The protocols and regression equations established here provide a basis for reliable reconstruction of somatic dimension from catarrhine fossils and validate our ability to compare or combine results of studies based on population data of either hard or soft tissue proxies.
Assuntos
Osso e Ossos , Macaca mulatta , Animais , Macaca mulatta/anatomia & histologia , Feminino , Masculino , Porto Rico , Osso e Ossos/anatomia & histologia , Antropologia Física , Caracteres Sexuais , Extremidades/anatomia & histologiaRESUMO
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of DNA segments that are identical-by-descent (IBD) yield the most precise estimates of relatedness. Here, we leverage novel methods for estimating locus-specific IBD from low coverage whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4-6× coverage data from a rhesus macaque (Macaca mulatta) population with available long-term pedigree data, we show that we can call the number and length of IBD segments across the genome with high accuracy even at 0.5× coverage. The resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. They identify cryptic genetic relatives that are not represented in the pedigree and reveal elevated recombination rates in females relative to males, which allows us to discriminate maternal and paternal kin using genotype data alone. Our findings represent a breakthrough in the ability to understand the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.
RESUMO
Understanding and treating human diseases require valid animal models. Leveraging the genetic diversity in rhesus macaque populations across eight primate centers in the United States, we conduct targeted-sequencing on 1845 individuals for 374 genes linked to inherited human retinal and neurodevelopmental diseases. We identify over 47,000 single nucleotide variants, a substantial proportion of which are shared with human populations. By combining rhesus and human allele frequencies with established variant prediction methods, we develop a machine learning-based score that outperforms established methods in predicting missense variant pathogenicity. Remarkably, we find a marked number of loss-of-function variants and putative deleterious variants, which may lead to the development of rhesus disease models. Through phenotyping of macaques carrying a pathogenic OPA1:p.A8S variant, we identify a genetic model of autosomal dominant optic atrophy. Finally, we present a public website housing variant and genotype data from over two thousand rhesus macaques.
Assuntos
Modelos Animais de Doenças , Variação Genética , Macaca mulatta , Animais , Macaca mulatta/genética , Humanos , Frequência do Gene , Atrofia Óptica Autossômica Dominante/genética , Polimorfismo de Nucleotídeo Único , Fenótipo , Aprendizado de Máquina , Genótipo , Mutação de Sentido IncorretoRESUMO
Increasing age is associated with dysregulated immune function and increased inflammation-patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio - all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals.
Assuntos
Antígenos HLA-DR , Alienação Social , Masculino , Feminino , Animais , Humanos , Macaca mulatta , Linfócitos T CD8-Positivos , InflamaçãoRESUMO
Humans exhibit sex differences in the prevalence of many neurodevelopmental disorders and neurodegenerative diseases. Here, we generated one of the largest multi-brain-region bulk transcriptional datasets for the rhesus macaque and characterized sex-biased gene expression patterns to investigate the translatability of this species for sex-biased neurological conditions. We identify patterns similar to those in humans, which are associated with overlapping regulatory mechanisms, biological processes, and genes implicated in sex-biased human disorders, including autism. We also show that sex-biased genes exhibit greater genetic variance for expression and more tissue-specific expression patterns, which may facilitate rapid evolution of sex-biased genes. Our findings provide insights into the biological mechanisms underlying sex-biased disease and support the rhesus macaque model for the translational study of these conditions.
Assuntos
Encéfalo , Macaca mulatta , Caracteres Sexuais , Transcriptoma , Animais , Macaca mulatta/genética , Encéfalo/metabolismo , Feminino , Masculino , Humanos , Evolução MolecularRESUMO
OBJECTIVES: Estimation of body mass from skeletal metrics can reveal important insights into the paleobiology of archeological or fossil remains. The standard approach constructs predictive equations from postcrania, but studies have questioned the reliability of traditional measures. Here, we examine several skeletal features to assess their accuracy in predicting body mass. MATERIALS AND METHODS: Antemortem mass measurements were compared with common skeletal dimensions from the same animals postmortem, using 115 rhesus macaques (male: n = 43; female: n = 72). Individuals were divided into training (n = 58) and test samples (n = 57) to build and assess Ordinary Least Squares or multivariate regressions by residual sum of squares (RSS) and AIC weights. A leave-one-out approach was implemented to formulate the best fit multivariate models, which were compared against a univariate and a previously published catarrhine body-mass estimation model. RESULTS: Femur circumference represented the best univariate model. The best model overall was composed of four variables (femur, tibia and fibula circumference and humerus length). By RSS and AICw, models built from rhesus macaque data (RSS = 26.91, AIC = -20.66) better predicted body mass than did the catarrhine model (RSS = 65.47, AIC = 20.24). CONCLUSION: Body mass in rhesus macaques is best predicted by a 4-variable equation composed of humerus length and hind limb midshaft circumferences. Comparison of models built from the macaque versus the catarrhine data highlight the importance of taxonomic specificity in predicting body mass. This paper provides a valuable dataset of combined somatic and skeletal data in a primate, which can be used to build body mass equations for fragmentary fossil evidence.
Assuntos
Macaca mulatta , Animais , Macaca mulatta/anatomia & histologia , Feminino , Masculino , Antropologia Física/métodos , Peso Corporal , Osso e Ossos/anatomia & histologia , Úmero/anatomia & histologiaRESUMO
While skin microbes are known to mediate human health and disease, there has been minimal research on the interactions between skin microbiota, social behavior, and year-to-year effects in non-human primates-important animal models for translational biomedical research. To examine these relationships, we analyzed skin microbes from 78 rhesus macaques living on Cayo Santiago Island, Puerto Rico. We considered age, sex, and social group membership, and characterized social behavior by assessing dominance rank and patterns of grooming as compared to nonsocial behaviors. To measure the effects of a shifting environment, we sampled skin microbiota (based on sequence analysis of the 16S rRNA V4 region) and assessed weather across sampling periods between 2013 and 2015. We hypothesized that, first, monkeys with similar social behavior and/or in the same social group would possess similar skin microbial composition due, in part, to physical contact, and, second, microbial diversity would differ across sampling periods. We found significant phylum-level differences between social groups in the core microbiome as well as an association between total grooming rates and alpha diversity in the complete microbiome, but no association between microbial diversity and measures of rank or other nonsocial behaviors. We also identified alpha and beta diversity differences in microbiota and differential taxa abundance across two sampling periods. Our findings indicate that social dynamics interact with yearly environmental changes to shape the skin microbiota in rhesus macaques, with potential implications for understanding the factors affecting the microbiome in humans, which share many biological and social characteristics with these animals. IMPORTANCE Primate studies are valuable for translational and evolutionary insights into the human microbiome. The majority of primate microbiome studies focus on the gut, so less is known about the factors impacting the microbes on skin and how their links affect health and behavior. Here, we probe the impact of social interactions and the yearly environmental changes on food-provisioned, free-ranging monkeys living on a small island. We expected animals that lived together and groomed each other would have more similar microbes on their skin, but surprisingly found that the external environment was a stronger influence on skin microbiome composition. These findings have implications for our understanding of the human skin microbiome, including potential manipulations to improve health and treat disease.
RESUMO
Nonhuman primates (NHPs) are vital translational research models due to their high genetic, physiological, and anatomical homology with humans. The "golden" rhesus macaque (Macaca mulatta) phenotype is a naturally occurring, inherited trait with a visually distinct pigmentation pattern resulting in light blonde colored fur. Retinal imaging also reveals consistent hypopigmentation and occasional foveal hypoplasia. Here, we describe the use of genome-wide association in 2 distinct NHP populations to identify candidate variants in genes linked to the golden phenotype. Two missense variants were identified in the Tyrosinase-related protein 1 gene (Asp343Gly and Leu415Pro) that segregate with the phenotype. An additional and distinct association was also found with a Tyrosinase variant (His256Gln), indicating the light-colored fur phenotype can result from multiple genetic mechanisms. The implicated genes are related through their contribution to the melanogenesis pathway. Variants in these 2 genes are known to cause pigmentation phenotypes in other species and to be associated with oculocutaneous albinism in humans. The novel associations presented in this study will permit further investigations into the role these proteins and variants play in the melanogenesis pathway and model the effects of genetic hypopigmentation and altered melanogenesis in a naturally occurring nonhuman primate model.
Assuntos
Hipopigmentação , Monofenol Mono-Oxigenase , Animais , Estudo de Associação Genômica Ampla , Macaca mulatta/genética , Macaca mulatta/metabolismo , Glicoproteínas de Membrana/genética , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/genética , FenótipoRESUMO
Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior, and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus macaque brain. Together, we profiled 2.58 M transcriptomes and 1.59 M epigenomes from single nuclei sampled from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular signatures of region-specific functions. We also identified 1.19 M candidate regulatory elements, many previously unidentified, allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk in a cell type-specific manner. Altogether, this multi-omic atlas provides an open resource for investigating the evolution of the human brain and identifying novel targets for disease interventions.
Assuntos
Encéfalo , Multiômica , Animais , Macaca mulatta/genética , TranscriptomaRESUMO
Monitoring genetic diversity in wild populations is a central goal of ecological and evolutionary genetics and is critical for conservation biology. However, genetic studies of nonmodel organisms generally lack access to species-specific genotyping methods (e.g. array-based genotyping) and must instead use sequencing-based approaches. Although costs are decreasing, high-coverage whole-genome sequencing (WGS), which produces the highest confidence genotypes, remains expensive. More economical reduced representation sequencing approaches fail to capture much of the genome, which can hinder downstream inference. Low-coverage WGS combined with imputation using a high-confidence reference panel is a cost-effective alternative, but the accuracy of genotyping using low-coverage WGS and imputation in nonmodel populations is still largely uncharacterized. Here, we empirically tested the accuracy of low-coverage sequencing (0.1-10×) and imputation in two natural populations, one with a large (n = 741) reference panel, rhesus macaques (Macaca mulatta), and one with a smaller (n = 68) reference panel, gelada monkeys (Theropithecus gelada). Using samples sequenced to coverage as low as 0.5×, we could impute genotypes at >95% of the sites in the reference panel with high accuracy (median r2 ≥ 0.92). We show that low-coverage imputed genotypes can reliably calculate genetic relatedness and population structure. Based on these data, we also provide best practices and recommendations for researchers who wish to deploy this approach in other populations, with all code available on GitHub (https://github.com/mwatowich/LoCSI-for-non-model-species). Our results endorse accurate and effective genotype imputation from low-coverage sequencing, enabling the cost-effective generation of population-scale genetic datasets necessary for tackling many pressing challenges of wildlife conservation.
RESUMO
Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques (Macaca mulatta). We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.
Assuntos
Envelhecimento , Comportamento Social , Animais , Macaca mulatta/fisiologia , BiologiaRESUMO
Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago Island, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques. We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.
RESUMO
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.