Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 17(11): 12997-3008, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23117438

RESUMO

Quercetin is a well-known antioxidant. Here, we investigated the effects of treatment with quercetin on mean arterial pressure (MAP), heart rate (HR) and baroreflex sensitivity (BRS) in spontaneously hypertensive rats (SHR). SHR and their controls (WKY) were orally treated with quercetin (2, 10 or 25 mg/kg/day) or saline for seven days. On the 8th day, MAP and HR were recorded. BRS was tested using phenylephrine (8 mg/kg, i.v.) and sodium nitroprusside (25 mg/kg, i.v.). Oxidative stress was measured by tiobarbituric acid reactive species assay. The doses of 10 (n = 8) and 25 mg/kg (n = 8) were able to decrease the MAP in SHR (n = 9) (163 ± 4 and 156 ± 5 vs. 173 ± 6, respectively, p < 0.05) but not in WKY (117 ± 1 and 118 ± 2 vs. 113 ± 1, respectively, p < 0.05). The dose of 25 mg/kg/day increased the sensitivity of parasympathetic component of the baroreflex (−2.47 ± 0.31 vs. −1.25 ± 0.8 bpm/mmHg) and decreased serum oxidative stress in SHR (2.04 ± 0.17 vs. 3.22 ± 0.37 nmol/mL, n = 6). Our data suggest that treatment with quercetin reduces hypertension and improves BRS in SHR via reduction in oxidative stress.


Assuntos
Anti-Hipertensivos/administração & dosagem , Barorreflexo/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Quercetina/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sistema Nervoso Simpático/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
2.
Redox Biol ; 48: 102209, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34915448

RESUMO

RATIONALE: Dietary nitrate and nitrite have a notoriously bad reputation because of their proposed association with disease, in particular cancer. However, more recent lines of research have challenged this dogma suggesting that intake of these anions also possess beneficial effects after in vivo conversion to the vital signaling molecule nitric oxide. Such effects include improvement in cardiovascular, renal and metabolic function, which is partly mediated via reduction of oxidative stress. A recent study even indicates that low dose of dietary nitrite extends life span in fruit flies. METHODS: In this study, 200 middle-aged Wistar rats of both sexes were supplemented with nitrate or placebo in the drinking water throughout their remaining life and we studied longevity, biochemical markers of disease, vascular reactivity along with careful determination of the cause of death. RESULTS: Dietary nitrate did not affect life span or the age-dependent changes in markers of oxidative stress, kidney and liver function, or lipid profile. Ex vivo examination of vascular function, however, showed improvements in endothelial function in rats treated with nitrate. Neoplasms were not more common in the nitrate group. CONCLUSION: We conclude that chronic treatment with dietary nitrate does not affect life span in rats nor does it increase the incidence of cancer. In contrast, vascular function was improved by nitrate, possibly suggesting an increase in health span.

3.
Appl Physiol Nutr Metab ; 40(4): 393-400, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659569

RESUMO

The hypothesis that oral supplementation with virgin coconut oil (Cocos nucifera L.) and exercise training would improve impaired baroreflex sensitivity (BRS) and reduce oxidative stress in spontaneously hypertensive rats (SHR) was tested. Adult male SHR and Wistar Kyoto rats (WKY) were divided into 5 groups: WKY + saline (n = 8); SHR + saline (n = 8); SHR + coconut oil (2 mL·day(-1), n = 8); SHR + trained (n = 8); and SHR + trained + coconut oil (n = 8). Mean arterial pressure (MAP) was recorded and BRS was tested using phenylephrine (8 µg/kg, intravenous) and sodium nitroprusside (25 µg·kg(-1), intravenous). Oxidative stress was measured using dihydroethidium in heart and aorta. SHR + saline, SHR + coconut oil, and SHR + trained group showed higher MAP compared with WKY + saline (175 ± 6, 148 ± 6, 147 ± 7 vs. 113 ± 2 mm Hg; p < 0.05). SHR + coconut oil, SHR + trained group, and SHR + trained + coconut oil groups presented lower MAP compared with SHR + saline group (148 ± 6, 147 ± 7, 134 ± 8 vs. 175 ± 6 mm Hg; p < 0.05). Coconut oil combined with exercise training improved BRS in SHR compared with SHR + saline group (-2.47 ± 0.3 vs. -1.39 ± 0.09 beats·min(-1)·mm Hg(-1); p < 0.05). SHR + saline group showed higher superoxide levels when compared with WKY + saline (774 ± 31 vs. 634 ± 19 arbitrary units (AU), respectively; p < 0.05). SHR + trained + coconut oil group presented reduced oxidative stress compared with SHR + saline in heart (622 ± 16 vs. 774 ± 31 AU, p < 0.05). In aorta, coconut oil reduced oxidative stress in SHR compared with SHR + saline group (454 ± 33 vs. 689 ± 29 AU, p < 0.05). Oral supplementation with coconut oil combined with exercise training improved impaired BRS and reduced oxidative stress in SHR.


Assuntos
Barorreflexo , Hipertensão/terapia , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal , Óleos de Plantas/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Óleo de Coco , Frequência Cardíaca/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sensibilidade e Especificidade , Superóxidos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Aumento de Peso/efeitos dos fármacos
4.
Front Physiol ; 4: 105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717285

RESUMO

Hypertension is a multifactorial disorder, which has been associated with the reduction in baroreflex sensitivity (BRS) and autonomic dysfunction. Several studies have revealed that increased reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase, following activation of type 1 receptor (AT1R) by Angiotensin-(Ang) II, the main peptide of the Renin-Angiotensin-Aldosterone System (RAAS), is the central mechanism involved in Ang-II-derived hypertension. In the present review, we will discuss the role of Ang II and oxidative stress in hypertension, the relationship between the BRS and the genesis of hypertension and how the oxidative stress triggers baroreflex dysfunction in several models of hypertension. Finally, we will describe some novel therapeutic drugs for improving the BRS during hypertension.

5.
Auton Neurosci ; 171(1-2): 28-35, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23141524

RESUMO

Previously, we found that the nitrate synthesized from glycerin, 2-nitrate-1,3-dibuthoxypropan (NDBP), increased NO levels in rat aortic smooth muscle cells, inducing vasorelaxation in mesenteric artery. However, its effects on blood pressure and heart rate as well as on autonomic function were not investigated. This study evaluated the action of NDBP on these cardiovascular parameters in spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats. We found that NDBP causes a biphasic response: hypotension and bradycardia followed by hypertension and tachycardia in WKY and SHR rats. Atropine (2mg/kg) blunted the hypotension induced by NDBP (15 mg/kg) in WKY and SHR (-75 ± 9 vs -12 ± 3 mmHg, n=6; -101 ± 6 vs -7 ± 2 bpm, n=6; respectively, p<0.05) and the pressor response to the compound was potentiated. Furthermore, vagotomy reduced the bradycardia in WKY and SHR (-136 ± 8 vs -17 ± 2, n=4, p<0.05; -141 ± 9 vs -8 ± 2, n=6, p<0.05). Moreover, hexamethonium (30 mg/kg) reduced both bradycardia (-278 ± 23 vs -48 ± 3 in WKY; -285 ± 16 vs -27 ± 19 in SHR, n=4; p<0.05) and pressor response (28 ± 8 vs -9 ± 5-WKY, n=6; 42 ± 7 vs -19 ± 8-SHR, n=5; p<0.05). In addition, administration of methylene blue (4 mg/kg) attenuated the hypotensive and bradycardic responses to the NDBP in all groups. In conclusion, NDBP induces bradycardia by direct vagal stimulation and pressor response by increasing sympathetic outflow to the periphery.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Nitratos/farmacologia , Doadores de Óxido Nítrico/farmacologia , Propano/análogos & derivados , Ratos Endogâmicos SHR , Análise de Variância , Animais , Atropina/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Azul de Metileno/farmacologia , Nitratos/química , Doadores de Óxido Nítrico/química , Parassimpatolíticos/farmacologia , Propano/química , Propano/farmacologia , Ratos , Ratos Endogâmicos WKY , Vagotomia , Vigília
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa