Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Cell ; 171(6): 1254-1256, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195071

RESUMO

Phytochrome signaling allows plants to sense and respond to light through gene regulation. Ushijima et al. (2017) demonstrate a role for phytochromes in widespread regulation of alternative promoter usage, resulting in light-dependent protein isoforms with altered subcellular localization that help the plant respond metabolically to fluctuating light conditions.


Assuntos
Arabidopsis , Fitocromo , Luz , Transporte Proteico , Transdução de Sinais
3.
PLoS Biol ; 21(12): e3002397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38051702

RESUMO

Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Plantas/genética , Estresse Fisiológico/genética , Folhas de Planta/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
4.
Plant Physiol ; 189(2): 906-921, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35166829

RESUMO

Nannochloropsis oceanica, like other stramenopile microalgae, is rich in long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA). We observed that fatty acid desaturases (FADs) involved in LC-PUFA biosynthesis were among the strongest blue light-induced genes in N. oceanica CCMP1779. Blue light was also necessary for maintaining LC-PUFA levels in CCMP1779 cells, and growth under red light led to a reduction in EPA content. Aureochromes are stramenopile-specific proteins that contain a light-oxygen-voltage (LOV)-sensing domain that associates with a flavin mononucleotide and is able to sense blue light. These proteins also contain a basic leucine zipper DNA-binding motif and can act as blue light-regulated transcription factors by associating with an E-box like motif, which we found enriched in the promoters of blue light-induced genes. We demonstrated that, in vitro, two CCMP1779 aureochromes were able to absorb blue light. Moreover, the loss or reduction of the expression of any of the three aureochrome genes led to a decrease in the blue light-specific induction of several FADs in CCMP1779. EPA content was also significantly reduced in NoAUREO2 and NoAUREO4 mutants. Taken together, our results indicate that aureochromes mediate blue light-dependent regulation of LC-PUFA content in N. oceanica CCMP1779 cells.


Assuntos
Microalgas , Estramenópilas , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Luz , Microalgas/genética , Microalgas/metabolismo , Estramenópilas/metabolismo
5.
Nature ; 592(7854): 327, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33850317

Assuntos
Mentores , Humanos
6.
J Bioenerg Biomembr ; 53(4): 463-487, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34191248

RESUMO

The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO's primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions-whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.


Assuntos
Bactérias/metabolismo , Plantas/química , Receptores de GABA/metabolismo , Sequência de Aminoácidos , Animais , Humanos
8.
New Phytol ; 225(2): 793-806, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518434

RESUMO

In plants, rubisco activase (Rca) regulates rubisco by removing inhibitory molecules such as ribulose-1,5-bisphosphate (RuBP). In cyanobacteria, a homologous protein (activase-like cyanobacterial protein, ALC), contains a distinctive C-terminal fusion resembling the small-subunit of rubisco. Although cyanobacterial rubisco is believed to be less sensitive to RuBP inhibition, the ALC is widely distributed among diverse cyanobacteria. Using microscopy, biochemistry and molecular biology, the cellular localization of the ALC, its effect on carboxysome/cell ultrastructure in Fremyella diplosiphon, and its function in vitro were studied. Bioinformatic analysis uncovered evolutionary relationships between the ALC and rubisco. ALC localizes to carboxysomes and exhibits ATPase activity. Furthermore, the ALC induces rubisco aggregation in a manner similar to that of another carboxysomal protein, M35, and this activity is affected by ATP. An alc deletion mutant showed modified cell morphology when grown under enriched CO2 and impaired regulation of carboxysome biogenesis, without affecting growth rate. Carbamylation of Fremyella recombinant rubisco was inhibited by RuBP, but this inhibition was not relieved by the ALC. The ALC does not appear to function like a canonical Rca; instead, it exerts an effect on the response to CO2 availability at the level of a metabolic module, the carboxysome, through rubisco network formation, and carboxysome organization.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Organelas/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Dióxido de Carbono/farmacologia , Biologia Computacional , Sequência Conservada , Cianobactérias/efeitos dos fármacos , Cianobactérias/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Família Multigênica , Mutação/genética , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Filogenia , Proteínas de Plantas/química , Proteínas Recombinantes/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Am J Bot ; 107(2): 329-338, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32002990

RESUMO

PREMISE: Light is critical in the ability of plants to accumulate chlorophyll. When exposed to far-red (FR) light and then grown in white light in the absence of sucrose, wild-type seedlings fail to green in a response known as the FR block of greening (BOG). This response is controlled by phytochrome A through repression of protochlorophyllide reductase-encoding (POR) genes by FR light coupled with irreversible plastid damage. Sigma (SIG) factors are nuclear-encoded proteins that contribute to plant greening and plastid development through regulating gene transcription in chloroplasts and impacting retrograde signaling from the plastid to nucleus. SIGs are regulated by phytochromes, and the expression of some SIG factors is reduced in phytochrome mutant lines, including phyA. Given the association of phyA with the FR BOG and its regulation of SIG factors, we investigated the potential regulatory role of SIG factors in the FR BOG response. METHODS: We examined FR BOG responses in sig mutants, phytochrome-deficient lines, and mutant lines for several phy-associated factors. We quantified chlorophyll levels and examined expression of key BOG-associated genes. RESULTS: Among six sig mutants, only the sig6 mutant significantly accumulated chlorophyll after FR BOG treatment, similar to the phyA mutant. SIG6 appears to control protochlorophyllide accumulation by contributing to the regulation of tetrapyrrole biosynthesis associated with glutamyl-tRNA reductase (HEMA1) function, select phytochrome-interacting factor genes (PIF4 and PIF6), and PENTA1, which regulates PORA mRNA translation after FR exposure. CONCLUSIONS: Regulation of SIG6 plays a significant role in plant responses to FR exposure during the BOG response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Fitocromo A , Fator sigma
11.
Plant J ; 91(4): 646-656, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28503830

RESUMO

The orange carotenoid protein (OCP) governs photoprotection in the majority of cyanobacteria. It is structurally and functionally modular, comprised of a C-terminal regulatory domain (CTD), an N-terminal effector domain (NTD) and a ketocarotenoid; the chromophore spans the two domains in the ground state and translocates fully into the NTD upon illumination. Using both the canonical OCP1 from Fremyella diplosiphon and the presumably more primitive OCP2 paralog from the same organism, we show that an NTD-CTD heterodimer forms when the domains are expressed as separate polypeptides. The carotenoid is required for the heterodimeric association, assembling an orange complex which is stable in the dark. Both OCP1 and OCP2 heterodimers are photoactive, undergoing light-driven heterodimer dissociation, but differ in their ability to reassociate in darkness, setting the stage for bioengineering photoprotection in cyanobacteria as well as for developing new photoswitches for biotechnology. Additionally, we reveal that homodimeric CTD can bind carotenoid in the absence of NTD, and name this truncated variant the C-terminal domain-like carotenoid protein (CCP). This finding supports the hypothesis that the OCP evolved from an ancient fusion event between genes for two different carotenoid-binding proteins ancestral to the NTD and CTD. We suggest that the CCP and its homologs constitute a new family of carotenoproteins within the NTF2-like superfamily found across all kingdoms of life.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carotenoides/metabolismo , Cristalografia por Raios X , Cianobactérias/química , Cianobactérias/genética , Cianobactérias/efeitos da radiação , Dimerização , Luz , Modelos Biológicos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Domínios Proteicos
13.
Plant Cell ; 27(7): 1820-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26106149

RESUMO

Auxin regulates numerous aspects of plant growth and development. For many years, investigating roles for AUXIN BINDING PROTEIN1 (ABP1) in auxin response was impeded by the reported embryo lethality of mutants defective in ABP1. However, identification of a viable Arabidopsis thaliana TILLING mutant defective in the ABP1 auxin binding pocket (abp1-5) allowed inroads into understanding ABP1 function. During our own studies with abp1-5, we observed growth phenotypes segregating independently of the ABP1 lesion, leading us to sequence the genome of the abp1-5 line described previously. We found that the abp1-5 line we sequenced contains over 8000 single nucleotide polymorphisms in addition to the ABP1 mutation and that at least some of these mutations may originate from the Arabidopsis Wassilewskija accession. Furthermore, a phyB null allele in the abp1-5 background is likely causative for the long hypocotyl phenotype previously attributed to disrupted ABP1 function. Our findings complicate the interpretation of abp1-5 phenotypes for which no complementation test was conducted. Our findings on abp1-5 also provide a cautionary tale illustrating the need to use multiple alleles or complementation lines when attributing roles to a gene product.


Assuntos
Arabidopsis/genética , Genoma de Planta , Mutação/genética , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Análise de Sequência de DNA , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Técnicas de Genotipagem , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Luz , Fenótipo , Fitocromo B/genética , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/efeitos da radiação
14.
Biochemistry ; 56(1): 73-84, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27990801

RESUMO

Tryptophan-rich sensory protein/translocator protein (TSPO) is a membrane protein involved in stress adaptation in the cyanobacterium Fremyella diplosiphon. Characterized mammalian and proteobacterial TSPO homologues bind tetrapyrroles and cholesterol ligands. We investigated the ligand binding properties of TSPO from F. diplosiphon (FdTSPO1), which was functionally characterized in prior genetic studies. Two additional TSPO proteins (FdTSPO2 and FdTSPO3) are present in F. diplosiphon; they are similar in size to reported bacterial TSPOs and smaller than FdTSPO1. The longer cyanobacterial TSPO1 is found almost exclusively in filamentous cyanobacteria and has a relatively low degree of homology to bacterial and mammalian TSPO homologues with confirmed tetrapyrrole binding. To probe distinctions of long-form TSPOs, we tested the binding of porphyrin and bilin to FdTSPO1 and measured binding affinities in the low micromolar range, with the highest binding affinity detected for heme. Although tetrapyrrole ligands bound FdTSPO1 with affinities similar to those previously reported for proteobacterial TSPO, binding of cholesterol to FdTSPO1 was particularly poor and was not improved by introducing an amino acid motif known to enhance cholesterol binding in other bacterial TSPO homologues. Additionally, we detected limited binding of bacterial hopanoids to FdTSPO1. Cyanobacterial TSPO1 from the oxygenic photosynthetic F. diplosiphon, thus, binds a range of tetrapyrroles of functional relevance with efficiencies similar to those of mammalian and proteobacterial homologues, but the level of cholesterol binding is greatly reduced compared to that of mammalian TSPO. Furthermore, the ΔFdTSPO1 mutant exhibits altered growth in the presence of biliverdin compared to that of wild-type cells under green light. Together, these results suggest that TSPO molecules may play roles in bilin homeostasis or trafficking in cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Proteínas de Membrana/metabolismo , Tetrapirróis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Pigmentos Biliares/metabolismo , Biliverdina/metabolismo , Sítios de Ligação/genética , Ligação Competitiva , Colesterol/metabolismo , Cianobactérias/classificação , Cianobactérias/genética , Heme/metabolismo , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Mutação , Filogenia , Porfirinas/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectrofotometria
15.
J Exp Bot ; 67(14): 4079-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217547

RESUMO

Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria.


Assuntos
Cianobactérias/metabolismo , Fotossíntese/fisiologia , Aclimatação/fisiologia , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fotorreceptores de Plantas/fisiologia
16.
J Exp Bot ; 67(10): 2931-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27117337

RESUMO

Here we consider the cyanobacterial carbon-concentrating mechanism (CCM) and photorespiration in the context of the regulation of light harvesting, using a conceptual framework borrowed from engineering: modularity. Broadly speaking, biological 'modules' are semi-autonomous functional units such as protein domains, operons, metabolic pathways, and (sub)cellular compartments. They are increasingly recognized as units of both evolution and engineering. Modules may be connected by metabolites, such as NADPH, ATP, and 2PG. While the Calvin-Benson-Bassham Cycle and photorespiratory salvage pathways can be considered as metabolic modules, the carboxysome, the core of the cyanobacterial CCM, is both a structural and a metabolic module. In photosynthetic organisms, which use light cues to adapt to the external environment and which tune the photosystems to provide the ATP and reducing power for carbon fixation, light-regulated modules are critical. The primary enzyme of carbon fixation, RuBisCO, uses CO2 as a substrate, which is accumulated via the CCM. However RuBisCO also has a secondary reaction in which it utilizes O2, a by-product of the photochemical modules, which leads to photorespiration. A complete understanding of the interplay among CCM and photorespiration is predicated on uncovering their connections to the light reactions and the regulatory factors and pathways that tune these modules to external cues. We probe this connection by investigating light inputs into the CCM and photorespiratory pathways in the chromatically acclimating cyanobacterium Fremyella diplosiphon.


Assuntos
Cianobactérias/metabolismo , Fotossíntese/fisiologia , Carbono/metabolismo , Cianobactérias/fisiologia , Luz , Fotofosforilação/fisiologia , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/fisiologia
17.
Biotechnol Bioeng ; 113(2): 311-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26192200

RESUMO

The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cianobactérias/genética , Cianobactérias/fisiologia , GMP Cíclico/análogos & derivados , Engenharia Metabólica/métodos , GMP Cíclico/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Vibrio cholerae/enzimologia , Vibrio cholerae/genética
18.
Mol Microbiol ; 93(1): 167-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24823920

RESUMO

Photoregulation of pigmentation during complementary chromatic acclimation (CCA) is well studied in Fremyella diplosiphon; however, mechanistic insights into the CCA-associated morphological changes are still emerging. F. diplosiphon cells are rectangular under green light (GL), whereas cells are smaller and spherical under red light (RL). Here, we investigate the role of morphogenes bolA and mreB during CCA using gene expression and gene function analyses. The F. diplosiphon bolA gene is essential as its complete removal from the genome was unsuccessful. Depletion of bolA resulted in slow growth, morphological defects and the accumulation of high levels of reactive oxygen species in a partially segregated ΔbolA strain. Higher expression of bolA was observed under RL and was correlated with lower expression of mreB and mreC genes in wild type. In a ΔrcaE strain that lacks the red-/green-responsive RcaE photoreceptor, the expression of bolA and mre genes was altered under both RL and GL. Observed gene expression relationships suggest that mreB and mreC expression is controlled by RcaE-dependent photoregulation of bolA expression. Expression of F. diplosiphon bolA and mreB homologues in Escherichia coli demonstrated functional conservation of the encoded proteins. Together, these studies establish roles for bolA and mreB in RcaE-dependent regulation of cellular morphology.


Assuntos
Aclimatação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Proteínas de Bactérias/química , Cianobactérias/citologia , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Genoma Bacteriano , Luz , Modelos Moleculares , Pigmentação , Estrutura Secundária de Proteína
19.
J Undergrad Neurosci Educ ; 13(3): A136-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26240521

RESUMO

The student and faculty make-up of academic institutions does not represent national demographics. Racial and ethnic minorities are disproportionately underrepresented nationally, and particularly at predominantly white institutions (PWIs). Although significant efforts and funding have been committed to increasing points of access or recruitment of under-represented minority (URM) students and faculty at PWIs, these individuals have not been recruited and retained at rates that reflect their national proportions. Underrepresentation of URMs is particularly prevalent in Science, Technology, Engineering, and Mathematics (STEM) disciplines. This reality represents a national crisis given a predicted shortage of workers in STEM disciplines based on current rates of training of all individuals, majority and URM, and the intersection of this limitation with persistent challenges in the recruitment, training, retention and advancement of URMs who will soon represent the largest pool of future trainees. An additional compounding factor is the increasingly disproportionate underrepresentation of minorities at higher professorial and administrative ranks, thus limiting the pool of potential mentors who are correlated with successful shepherding of URM students through STEM training and development. We address issues related to improving recruitment and retention of URM faculty that are applicable across a range of academic institutions. We describe challenges with recruitment and retention of URM faculty and their advancement through promotion in the faculty ranks and into leadership positions. We offer specific recommendations, including identifying environmental barriers to diversity and implementing strategies for their amelioration, promoting effective and innovative mentoring, and addressing leadership issues related to constructive change for promoting diversity.

20.
Microbiology (Reading) ; 160(Pt 5): 992-1005, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623652

RESUMO

Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals. Therefore, organisms regulate cellular iron levels to maintain optimal iron homeostasis. In particular, iron is an essential factor for the function of photosystems associated with photosynthetic light-harvesting complexes. Photosynthetic organisms, including cyanobacteria, generally respond to iron deficiency by reduced growth, degradation of non-essential proteins and in some cases alterations of cellular morphology. In response to fluctuations in ambient light quality, the cyanobacterium Fremyella diplosiphon undergoes complementary chromatic adaptation (CCA). During CCA, phycobiliprotein composition of light-harvesting antennae is altered in response to green light (GL) and red light (RL) for efficient utilization of light energy for photosynthesis. We observed light-regulated responses to iron limitation in F. diplosiphon. RL-grown cells exhibited significant reductions in growth and pigment levels, and alterations in iron-associated proteins, which impact the accumulation of reactive oxygen species under iron-limiting conditions, whereas GL-grown cells exhibited partial resistance to iron limitation. We investigated the roles of known CCA regulators RcaE, RcaF and RcaC in this light-dependent iron-acclimation response. Through comparative analyses of wild-type and CCA mutant strains, we determined that photoreceptor RcaE has a central role in light-induced oxidative stress associated with iron limitation, and impacts light-regulated iron-acclimation responses, physiologically and morphologically.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Luz , Complexos de Proteínas Captadores de Luz/genética , Mutação , Pigmentos Biológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa