Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(54): 12397-12402, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32378750

RESUMO

Selective processing of the ß-O-4 unit in lignin is essential for the efficient depolymerisation of this biopolymer and therefore its successful integration into a biorefinery set-up. An approach is described in which this unit is modified to incorporate a carboxylic ester with the goal of enabling the use of mild depolymerisation conditions. Inspired by preliminary results using a Cu/TEMPO/O2 system, a protocol was developed that gave the desired ß-O-4-containing ester in high yield using certain dimeric model compounds. The optimised reaction conditions were then applied to an oligomeric lignin model system. Extensive 2D NMR analysis demonstrated that analogous chemistry could be achieved with the oligomeric substrate. Mild depolymerisation of the ester-containing oligomer delivered the expected aryl acid monomer.

2.
Org Biomol Chem ; 14(42): 10023-10030, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27725988

RESUMO

Understanding the structure of technical lignins resulting from acid-catalysed treatment of lignocellulosic biomass is important for their future applications. Here we report an investigation into the fate of lignin under acidic aqueous organosolv conditions. In particular we examine in detail the formation and reactivity of non-native Hibbert ketone structures found in isolated organosolv lignins from both Douglas fir and beech woods. Through the use of model compounds combined with HSQC, HMBC and HSQC-TOCSY NMR experiments we demonstrate that, depending on the lignin source, both S and G lignin-bound Hibbert ketone units can be present. We also show that these units can serve as a source of novel mono-aromatic compounds following an additional lignin depolymerisation reaction.


Assuntos
Cetonas/química , Lignina/química , Lignina/síntese química , Técnicas de Química Sintética , Concentração de Íons de Hidrogênio , Madeira/química
3.
ACS Sustain Chem Eng ; 11(39): 14323-14333, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37799817

RESUMO

Cocoa pod husks (CPHs) represent an underutilized component of the chocolate manufacturing process. While industry's current focus is understandably on the cocoa beans, the husks make up around 75 wt % of the fruit. Previous studies have been dominated by the carbohydrate polymers present in CPHs, but this work highlights the presence of the biopolymer lignin in this biomass. An optimized organosolv lignin isolation protocol was developed, delivering significant practical improvements. This new protocol may also prove to be useful for agricultural waste-derived biomasses in general. NMR analysis of the high quality lignin led to an improved structural understanding, with evidence provided to support deacetylation of the lignin occurring during the optimized pretreatment. Chemical transformation, using a tosylation, azidation, copper-catalyzed click protocol, delivered a modified lignin oligomer with an organophosphorus motif attached. Thermogravimetric analysis was used to demonstrate the oligomer's potential as a flame-retardant. Preliminary analysis of the other product streams isolated from the CPHs was also carried out.

4.
ChemistryOpen ; 8(5): 601-605, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31110931

RESUMO

Recent reports demonstrate that applications of the biopolymer lignin can be helped by the use of a fraction of the lignin which has an optimal molecular weight range. Unfortunately, the current methods used to determine lignin's molecular weight are inconsistent or not widely accessible. Here, an approach that relies on 2D DOSY NMR analysis is described that provides a measure of lignin's molecular weight. Consistent results were obtained using this well-established NMR technique across a range of lignins.

5.
ChemSusChem ; 12(1): 190-193, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30221480

RESUMO

The depolymerization of the biopolymer lignin can give pure aromatic monomers but selective catalytic approaches remain scarce. Here, an approach was rerouted to deliver an unusual phenolic monomer. This monomer's instability proved challenging, but a degradation study identified strategies to overcome this. Heterocycles and a useful synthetic intermediate were prepared. The range of aromatics available from the ß-O-4 unit in lignin was extended.

6.
ACS Omega ; 2(11): 8466-8474, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457383

RESUMO

One key challenge hindering the valorization of lignin is its structural complexity. Artificial lignin-like materials provide a stepping stone between the simplicity of model compounds and the complexity of lignin. Here, we report an optimized synthesis of an all-G ß-O-4 polymer 1 designed to model softwood lignin. After acetylation, the polymer Ac-1(V) was fractionated using a protocol that involved only volatile organic solvents, which left no insoluble residue. Using diffusion ordered spectroscopy NMR in combination with gel permeation chromatography, it was revealed that this fractionated material behaved like a flexible linear polymer in solution (average α > 0.5). Acetylated kraft lignin was subsequently processed using the same fractionation protocol. By comparison with the model polymer, we propose that the acetylated kraft lignin is composed of two classes of materials that exhibit contrasting physical properties. One is comparable to the acetylated all-G ß-O-4 polymer Ac-1, and the second has a significantly different macromolecular structure.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa