Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Inf Sci Eng ; 21(2)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34135695

RESUMO

Despite the huge efforts to deploy wireless communications technologies in smart manufacturing scenarios, some manufacturing sectors are still slow to massive adoption. This slowness of widespread adoption of wireless technologies in cyber-physical systems (CPS) is partly due to not fully understanding the detailed impact of wireless deployment on the physical processes especially in the cases that require low latency and high reliability communications. In this paper, we introduce an approach to integrate wireless network traffic data and physical processes data in order to evaluate the impact of wireless communications on the performance of a manufacturing factory work-cell. The proposed approach is introduced through the discussion of an engineering use case. A testbed that emulates a robotic manufacturing factory work-cell is constructed using two collaborative-grade robot arms, machine emulators, and wireless communication devices. All network traffic data is collected and physical process data, including the robots and machines states and various supervisory control commands, is also collected and synchronized to the network data. The data is then integrated where redundant data is removed and correlated activities are connected in a graph database. A data model is proposed, developed, and elaborated; the database is then populated with events from the testbed, and the resulting graph is presented. Query commands are then presented as a means to examine and analyze network performance and relationships within the components of the network. Moreover, we detail the way by which this approach is used to study the impact of wireless communications on the physical processes and illustrate the impact of various wireless network parameters on the performance of the emulated manufacturing work-cell. This approach can be deployed as a building block for various descriptive and predictive wireless analysis tools for CPS.

2.
Tappi J ; 17(9)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30983693

RESUMO

Current product composition and quality test methods for the paper and pulp industry are mainly based on manual ex-situ wet-bench chemistry techniques. For example, the standard method for determining the furnish of paper, TAPPI T 401 "Fiber analysis of paper and paperboard," relies on the experience and visual acuity of a specially trained analyst to determine the individual plant species present and to quantify the amount of each constituent fiber type in a sheet of paper. Thus, there is a need for a fast, nondestructive analytical technique that leverages intrinsic attributes of the analytes. In this paper, we demonstrate an application of dielectric spectroscopy (DS) as a potential metrology to differentiate between nonwood pulp and wood pulp fibers. This in-situ, noncontact and nondestructive assessment method has inherent forensic capabilities and is also amiable to quality assurance techniques such as gauge capability studies and real-time statistical process control (SPC). APPLICATION: The dielectric spectroscopy results presented in this paper can nondestructively determine the amount of lignin in paper products and are in principle comparable to the performance specifications of the TAPPI Standard Test Method T 401 and should enable the sources of printing substrates to be both authenticated and validated in real time in a paper testing laboratory environment.

3.
ECS J Solid State Sci Technol ; 6(9): N155-N162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29214117

RESUMO

In this paper, we discuss the use of broadband microwaves (MW) to characterize the thermal stability of organic and hybrid silicon-organic thin films meant for insulation applications in micro- and nanoelectronic devices. We take advantage of MW propagation characteristics to extract and examine the relationships between electrical properties and the chemistry of prototypical low-k materials. The impact of thermal anneal at modest temperatures is examined to shed light on the thermal-induced performance and reliability changes within the dielectric films. These changes are then correlated with the chemical changes in the films, and could provide basis for rational selection of organic dielectrics for integrated devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa