Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am Nat ; 185(4): 538-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25811087

RESUMO

When there is conspicuous underexploitation of a limited resource, it is worth asking, what mechanisms allow presumably valuable resources to be left unused? Evolutionary biologists have generated a wide variety of hypotheses to explain this, ranging from interdemic group selection to selfishly prudent individual restraint. We consider a situation in which, despite high intraspecific competition, individuals leave most of a key resource unexploited. The parasitic wasp that does this finds virtually all host egg clusters in a landscape but parasitizes only about a third of the eggs in each and then leaves a deterrent mark around the cluster. We first test-and reject-a series of system-specific simple constraints that might limit full host exploitation, such as asynchronous maturation of host eggs. We then consider classical hypotheses for the evolution of restraint. Prudent predation and bet-hedging fail as explanations because the wasp lives as a large, well-mixed population. Additionally, we find no individual benefits to the parasitoid of developing in a sparsely parasitized host nest. However, an optimal foraging model, including empirically measured costs of superparasitism and hyperparasitism, can explain through individual selection both the consistently low rate of parasitism and deterrent marking.


Assuntos
Borboletas/parasitologia , Vespas/fisiologia , Comunicação Animal , Animais , Comportamento Animal , Comportamento Competitivo , Feminino , Modelos Teóricos , Oviposição
2.
Glob Chang Biol ; 19(11): 3368-78, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23828758

RESUMO

The rapid increase in atmospheric CO2 concentrations (Ca ) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca . Here we report data on annual sums of CO2 (NEE(net) ) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)- and Spartina patens (C4 photosynthetic pathway)-dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm). Our objectives were to (i) quantify effects of elevated Ca on seasonally integrated CO2 assimilation (NEE(net) = NEE(day) + NEE(night) , kg C m(-2) y(-1) ) for the two communities; and (ii) quantify effects of altered canopy N content on ecosystem photosynthesis and respiration. Across all years, NEE(net) averaged 1.9 kg m(-2) y(-1) in ambient Ca and 2.5 kg m(-2) y(-1) in elevated Ca , for the C3 -dominated community. Similarly, elevated Ca significantly (P < 0.01) increased carbon uptake in the C4 -dominated community, as NEE(net) averaged 1.5 kg m(-2) y(-1) in ambient Ca and 1.7 kg m(-2) y(-1) in elevated Ca . This resulted in an average CO2 stimulation of 32% and 13% of seasonally integrated NEE(net) for the C3 - and C4 -dominated communities, respectively. Increased NEE(day) was correlated with increased efficiencies of light and nitrogen use for net carbon assimilation under elevated Ca , while decreased NEE(night) was associated with lower canopy nitrogen content. These results suggest that rising Ca may increase carbon assimilation in both C3 - and C4 -dominated wetland communities. The challenge remains to identify the fate of the assimilated carbon.


Assuntos
Dióxido de Carbono/análise , Cyperaceae/metabolismo , Ecossistema , Poaceae/metabolismo , Atmosfera , Baías , Ciclo do Carbono , Mudança Climática , Nitrogênio/análise , Brotos de Planta/metabolismo , Áreas Alagadas
3.
J Theor Biol ; 336: 75-86, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23876764

RESUMO

In the beeswax combs of honey bees, the cells of brood, pollen, and honey have a consistent spatial pattern that is sustained throughout the life of a colony. This spatial pattern is believed to emerge from simple behavioral rules that specify how the queen moves, where foragers deposit honey/pollen and how honey/pollen is consumed from cells. Prior work has shown that a set of such rules can explain the formation of the allocation pattern starting from an empty comb. We show that these rules cannot maintain the pattern once the brood start to vacate their cells, and we propose new, biologically realistic rules that better sustain the observed allocation pattern. We analyze the three resulting models by performing hundreds of simulation runs over many gestational periods and a wide range of parameter values. We develop new metrics for pattern assessment and employ them in analyzing pattern retention over each simulation run. Applied to our simulation results, these metrics show alteration of an accepted model for honey/pollen consumption based on local information can stabilize the cell allocation pattern over time. We also show that adding global information, by biasing the queen's movements towards the center of the comb, expands the parameter regime over which pattern retention occurs.


Assuntos
Abelhas/fisiologia , Comportamento Animal , Análise de Variância , Animais , Simulação por Computador , Mel , Modelos Biológicos , Pólen/citologia , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa