Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 526(3): 706-712, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32253028

RESUMO

Toxin-antitoxin systems are known to be involved in many bacterial functions that can lead to growth arrest and cell death in response to stress. Typically, toxin and antitoxin genes of type I systems are located in opposite strands, where the antitoxin is a small antisense RNA (sRNA). In the present work we show that the sRNA IsrA from Salmonella Typhimurium down-regulates the expression of its overlapping gene STM0294.1n. Multiple sequence alignment and comparative structure analysis indicated that STM0294.1n belongs to the SymE toxin superfamily, and the gene was renamed iasE (IsrA-overlapping gene with similarity to SymE). The iasE expression was induced in response to mitomycin C, an SOS-inducing agent; conversely, IsrA overexpression repressed the iasE expression even in the presence of mitomycin C. Accordingly, the inactivation of IsrA with an anti-IsrA RNA expressed in trans abrogated the repressive effect of IsrA on the iasE expression. On the other hand, iasE overexpression, as well as the blockage of the antisense IsrA function, negatively affected bacterial growth, arguing for a toxic effect of the iasE gene product. Besides, a bacterial lysate obtained from the iasE-overexpressing strain exhibited endoribonuclease activity, as determined by a fluorometric assay based on fluorescent reporter RNAs. Together, these results indicate that the IasE/IsrA pair of S. Typhimurium constitutes a functional type I toxin-antitoxin system.


Assuntos
Proteínas de Bactérias/genética , RNA Antissenso/genética , RNA Bacteriano/genética , Resposta SOS em Genética/genética , Salmonella typhimurium/genética , Sequência de Aminoácidos , Antitoxinas/genética , Toxinas Bacterianas/genética , Endorribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Mitomicina/metabolismo , Modelos Moleculares , Mutação , Fases de Leitura Aberta/genética , Conformação Proteica , Dobramento de Proteína
2.
Microorganisms ; 9(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803635

RESUMO

Growing evidence indicates that small noncoding RNAs (sRNAs) play important regulatory roles during bacterial infection. In Salmonella Typhimurium, several sRNAs are strongly up-regulated within macrophages, but little is known about their role during the infection process. Among these sRNAs, the well-characterized paralogs RyhB-1 and RyhB-2 are two regulators of gene expression mainly related with the response to iron availability. To investigate the role of the sRNAs RyhB-1 and RyhB-2 from S. Typhimurium in the infection of RAW264.7 macrophages, we analyzed several phenotypic traits from intracellular mutant strains lacking one and both sRNAs. Deletion of RyhB-1 and/or RyhB-2 resulted in increased intracellular survival and faster replication within macrophages. The bacterial metabolic status inside macrophages was also analyzed, revealing that all the mutant strains exhibited higher intracellular levels of ATP and lower NAD+/NADH ratios than the wild type. Expression analyses from bacteria infecting macrophages showed that RyhB-1 and RyhB-2 affect the intra-macrophage expression of bacterial genes associated with the Salmonella pathogenicity island 1 (SPI-1) and the type III secretion system (T3SS). With a two-plasmid system and compensatory mutations, we confirmed that RyhB-1 and RyhB-2 directly interact with the mRNAs of the invasion chaperone SicA and the regulatory protein RtsB. Altogether, these results indicate that the RyhB homologs contribute to the S. Typhimurium virulence modulation inside macrophages by reducing the intracellular growth and down-regulating the SPI-1 gene expression.

3.
Microorganisms ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209738

RESUMO

Yersinia ruckeri causes outbreaks of enteric redmouth disease in salmon aquaculture all over the world. The transient antibiotic tolerance exhibited by bacterial persisters is commonly thought to be responsible for outbreaks; however, the molecular factors underlying this behavior have not been explored in Y. ruckeri. In this study, we investigated the participation of the RNA chaperone Hfq from Y. ruckeri in antibiotic persistence. Cultures of the hfq-knockout mutant (Δhfq) exhibited faster replication, increased ATP levels and a more reductive environment than the wild type. The growth curves of bacteria exposed to sublethal concentrations of ampicillin, oxolinic acid, ciprofloxacin and polymyxin B revealed a greater susceptibility for the Δhfq strain. The time-kill curves of bacteria treated with the antibiotics mentioned above and florfenicol, using inoculums from exponential, stationary and biofilm cultures, demonstrated that the Δhfq strain has significant defects in persister cells production. To shed more light on the role of Hfq in antibiotic persistence, we analyzed its dependence on the (p)ppGpp synthetase RelA by determining the persister cells production in the absence of the relA gene. The ΔrelA and ΔrelAΔhfq strains displayed similar defects in persister cells formation, but higher than Δhfq strain. Similarly, stationary cultures of the ΔrelA and ΔrelAΔhfq strains exhibited comparable levels of ATP but higher than that of the Δhfq strain, indicating that relA is epistatic over hfq. Taken together, our findings provide valuable information on antibiotic persistence in Y. ruckeri, shedding light on the participation of Hfq in the persistence phenomenon.

4.
Microbiol Res ; 242: 126629, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33153884

RESUMO

Small noncoding RNAs (sRNAs) are important regulators of gene expression and physiology in bacteria. RyhB is an iron-responsive sRNA well characterized in Escherichia coli and conserved in other Enterobacteriaceae. In this study, we identified and characterized two RyhB homologs (named RyhB-1 and RyhB-2) in the fish pathogen Yersinia ruckeri. We found that, as in other Enterobacteriaceae, both RyhB-1 and RyhB-2 are induced under iron starvation, repressed by the Fur regulator, and depend on Hfq for stability. Despite these similarities in expression, the mutant strains of Y. ruckeri lacking RyhB-1 (ΔryhB-1) or RyhB-2 (ΔryhB-2) exhibited differential phenotypes. In comparison with the wild type, the ΔryhB-1 strain showed a hypermotile phenotype, reduced biofilm formation, increased replication rate, faster growth, and increased ATP levels in bacterial cultures. By contrast, in salmon cell cultures, the ΔryhB-1 strain exhibited an increased survival. On the other hand, the ΔryhB-2 strain was non-motile and showed augmented biofilm formation as compared to the wild type. The expression of a subset of RyhB conserved targets, selected from different bacterial species, was analyzed by quantitative RT-PCR in wild type, ΔryhB-1, ΔryhB-2, and ΔryhB-1 ΔryhB-2 strains cultured in iron-depleted media. RyhB-1 negatively affected the expression of most analyzed genes (sodB, acnA, sdhC, bfr, fliF, among others), whose functions are related to metabolism and motility, involving iron-containing proteins. Among the genes analyzed, only sdhC and bfr appeared as targets for RyhB-2. Taken together, these results indicate that Y. ruckeri RyhB homologs participate in the modulation of the bacterial physiology with non-redundant roles.


Assuntos
Fenômenos Fisiológicos Bacterianos , Doenças dos Peixes/microbiologia , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Yersinia ruckeri/genética , Yersinia ruckeri/fisiologia , Animais , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Peixes , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Homeostase , Ferro/metabolismo , Fenótipo , Yersiniose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa