Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2317673121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889126

RESUMO

Psychosocial experiences affect brain health and aging trajectories, but the molecular pathways underlying these associations remain unclear. Normal brain function relies on energy transformation by mitochondria oxidative phosphorylation (OxPhos). Two main lines of evidence position mitochondria both as targets and drivers of psychosocial experiences. On the one hand, chronic stress exposure and mood states may alter multiple aspects of mitochondrial biology; on the other hand, functional variations in mitochondrial OxPhos capacity may alter social behavior, stress reactivity, and mood. But are psychosocial exposures and subjective experiences linked to mitochondrial biology in the human brain? By combining longitudinal antemortem assessments of psychosocial factors with postmortem brain (dorsolateral prefrontal cortex) proteomics in older adults, we find that higher well-being is linked to greater abundance of the mitochondrial OxPhos machinery, whereas higher negative mood is linked to lower OxPhos protein content. Combined, positive and negative psychosocial factors explained 18 to 25% of the variance in the abundance of OxPhos complex I, the primary biochemical entry point that energizes brain mitochondria. Moreover, interrogating mitochondrial psychobiological associations in specific neuronal and nonneuronal brain cells with single-nucleus RNA sequencing (RNA-seq) revealed strong cell-type-specific associations for positive psychosocial experiences and mitochondria in glia but opposite associations in neurons. As a result, these "mind-mitochondria" associations were masked in bulk RNA-seq, highlighting the likely underestimation of true psychobiological effect sizes in bulk brain tissues. Thus, self-reported psychosocial experiences are linked to human brain mitochondrial phenotypes.


Assuntos
Encéfalo , Mitocôndrias , Fosforilação Oxidativa , Humanos , Mitocôndrias/metabolismo , Masculino , Feminino , Encéfalo/metabolismo , Idoso , Estresse Psicológico/metabolismo , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Neurônios/metabolismo , Proteômica/métodos , Afeto/fisiologia
2.
Psychosom Med ; 86(2): 89-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38193786

RESUMO

OBJECTIVE: Psychosocial stress is transduced into disease risk through energy-dependent release of hormones from the hypothalamic-pituitary-adrenal and sympathetic-adrenal-medullary axes. The levels of glucocorticoid and adrenergic hormones, together with the sensitivity of tissues to their signaling, define stress responses. To understand existing pathways responsible for the psychobiological transduction of stressful experiences, we provide a quantitative whole-body map of glucocorticoid and adrenergic receptor (AR) expression. METHODS: We systematically examined gene expression levels for the glucocorticoid receptor (GR), α- and ß-ARs (AR-α1B, AR-α2B AR-ß2, and AR-ß3), across 55 different organs using the Human Protein Atlas and Human Proteome Map datasets. Given that mitochondria produce the energy required to respond to stress, we leveraged the Human Protein Atlas and MitoCarta3.0 data to examine the link between stress hormone receptor density and mitochondrial gene expression. Finally, we tested the functional interplay between GR activation and AR expression in human fibroblast cells. RESULTS: The GR was expressed ubiquitously across all investigated organ systems, whereas AR subtypes showed lower and more localized expression patterns. Receptor co-regulation, meaning the correlated gene expression of multiple stress hormone receptors, was found between GR and AR-α1B, as well as between AR-α1B and AR-α2B. In cultured human fibroblasts, activating the GR selectively increased AR-ß2 and AR-α1B expression. Consistent with the known energetic cost of stress responses, GR and AR expressions were positively associated with the expression of specific mitochondrial pathways. CONCLUSIONS: Our results provide a cartography of GR and AR expression across the human body. Because stress-induced GR and AR signaling triggers energetically expensive cellular pathways involving energy-transforming mitochondria, the tissue-specific expression and co-expression patterns of hormone receptor subtypes may in part determine the resilience or vulnerability of different organ systems.


Assuntos
Glucocorticoides , Receptores Adrenérgicos , Humanos , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo , Transdução de Sinais , Receptores de Glucocorticoides/metabolismo
3.
Mov Disord ; 37(1): 80-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637165

RESUMO

BACKGROUND: The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. OBJECTIVES: We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. METHODS: Using two-dimensional and three-dimensional models of patients' derived neurons we recapitulated PD-related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. RESULTS: PD patient-derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2-hydroxypropyl-ß-cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient-specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. CONCLUSION: We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient-derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Animais , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Organoides/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fenótipo
4.
Mikrochim Acta ; 188(6): 203, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34043106

RESUMO

Molecularly imprinted polymer (MIP)-based electrochemical sensors for the protein α-synuclein (a marker for Parkinson's disease) were developed using a peptide epitope from the protein. MIPs doped with various concentrations and species of transition metal dichalcogenides (TMDs) to enhance conductivity were electropolymerized with and without template molecules. The current during the electropolymerization was compared with that associated with the electrochemical response (at 0.24~0.29 V vs. ref. electrode) to target peptide molecules in the finished sensor. We found that this relationship can aid in the rational design of conductive MIPs for the recognition of biomarkers in biological fluids. The sensing range and limit of detection of TMD-doped imprinted poly(AN-co-MSAN)-coated electrodes were 0.001-100 pg/mL and 0.5 fg/mL (SNR = 3), respectively. To show the potential applicability of the MIP electrochemical sensor, cell culture medium from PD patient-specific midbrain organoids generated from induced pluripotent stem cells was analyzed. α-Synuclein levels were found to be significantly reduced in the organoids from PD patients, compared to those generated from age-matched controls. The relative standard deviation and recovery are less than 5% and 95-115%, respectively. Preparation of TMD-doped α-synuclein (SNCA) peptide-imprinted poly(AN-co-MSAN)-coated electrodes.


Assuntos
Dissulfetos/química , Polímeros Molecularmente Impressos/química , Molibdênio/química , Sulfetos/química , Compostos de Tungstênio/química , alfa-Sinucleína/análise , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Mesencéfalo/química , Organoides/química , Doença de Parkinson/diagnóstico , Fragmentos de Peptídeos/química , alfa-Sinucleína/química
6.
Life Metab ; 3(3)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38566850

RESUMO

Major life transitions are always difficult because change costs energy. Recent findings have demonstrated how mitochondrial oxidative phosphorylation (OxPhos) defects increase the energetic cost of living, and that excessive integrated stress response (ISR) signaling may prevent cellular identity transitions during development. In this perspective, we discuss general bioenergetic principles of life transitions and the costly molecular processes involved in reprograming the cellular hardware/software as cells shift identity. The energetic cost of cellular differentiation has not been directly quantified, representing a gap in knowledge. We propose that the ISR is an energetic checkpoint evolved to i) prevent OxPhos-deficient cells from engaging in excessively costly transitions, and ii) allow ISR-positive cells to recruit systemic energetic resources by signaling via the brain.

7.
bioRxiv ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39345381

RESUMO

Energy transformation capacity is generally assumed to be a coherent individual trait driven by genetic and environmental factors. This predicts that some individuals should have high and others low mitochondrial oxidative phosphorylation (OxPhos) capacity across organ systems. Here, we test this assumption using multi-tissue molecular and enzymatic activities in mice and humans. Across up to 22 mouse tissues, neither mitochondrial OxPhos capacity nor mtDNA density were correlated between tissues (median r = -0.01-0.16), indicating that animals with high mitochondrial capacity in one tissue can have low capacity in other tissues. Similarly, the multi-tissue correlation structure of RNAseq-based indices of mitochondrial gene expression across 45 tissues from 948 women and men (GTEx) showed small to moderate coherence between only some tissues (regions of the same brain), but not between brain-body tissue pairs in the same person (median r = 0.01). Mitochondrial DNA copy number (mtDNAcn) also lacked coherence across organs and tissues. Mechanistically, tissue-specific differences in mitochondrial gene expression were attributable in part to i) tissue-specific activation of canonical energy sensing pathways including the transcriptional coactivator PGC-1 and the integrated stress response (ISR), and ii) proliferative activity across tissues. Finally, we identify subgroups of individuals with high mitochondrial gene expression in some tissues (e.g., heart) but low expression in others (e.g., skeletal muscle) who display different clinical phenotypic patterns. Taken together, these data raise the possibility that tissue-specific energy sensing pathways may contribute to the idiosyncratic mitochondrial distribution patterns associated with the inter-organ heterogeneity and phenotypic diversity among individuals.

8.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38659958

RESUMO

GDF15 (growth differentiation factor 15) is a marker of cellular energetic stress linked to physical-mental illness, aging, and mortality. However, questions remain about its dynamic properties and measurability in human biofluids other than blood. Here, we examine the natural dynamics and psychobiological regulation of plasma and saliva GDF15 in four human studies representing 4,749 samples from 188 individuals. We show that GDF15 protein is detectable in saliva (8% of plasma concentration), likely produced by salivary glands secretory duct cells. Using a brief laboratory socio-evaluative stressor paradigm, we find that psychosocial stress increases plasma (+3.5-5.9%) and saliva GDF15 (+43%) with distinct kinetics, within minutes. Moreover, saliva GDF15 exhibits a robust awakening response, declining by ~40-89% within 30-45 minutes from its peak level at the time of waking up. Clinically, individuals with genetic mitochondrial OxPhos diseases show elevated baseline plasma and saliva GDF15, and post-stress GDF15 levels in both biofluids correlate with multi-system disease severity, exercise intolerance, and the subjective experience of fatigue. Taken together, our data establish that saliva GDF15 is dynamic, sensitive to psychological states, a clinically relevant endocrine marker of mitochondrial diseases. These findings also point to a shared psychobiological pathway integrating metabolic and mental stress.

9.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496679

RESUMO

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

10.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562777

RESUMO

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

11.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370689

RESUMO

While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.

12.
Trends Endocrinol Metab ; 35(10): 884-901, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39389809

RESUMO

Health emerges from coordinated psychobiological processes powered by mitochondrial energy transformation. But how do mitochondria regulate the multisystem responses that shape resilience and disease risk across the lifespan? The Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) study was established to address this question and determine how mitochondria influence the interconnected neuroendocrine, immune, metabolic, cardiovascular, cognitive, and emotional systems among individuals spanning the spectrum of mitochondrial energy transformation capacity, including participants with rare mitochondrial DNA (mtDNA) lesions causing mitochondrial diseases (MitoDs). This interdisciplinary effort is expected to generate new insights into the pathophysiology of MitoDs, provide a foundation to develop novel biomarkers of human health, and integrate our fragmented knowledge of bioenergetic, brain-body, and mind-mitochondria processes relevant to medicine and public health.


Assuntos
Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Doenças Mitocondriais/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
13.
Nat Metab ; 5(4): 546-562, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37100996

RESUMO

Mitochondria have cell-type specific phenotypes, perform dozens of interconnected functions and undergo dynamic and often reversible physiological recalibrations. Given their multifunctional and malleable nature, the frequently used terms 'mitochondrial function' and 'mitochondrial dysfunction' are misleading misnomers that fail to capture the complexity of mitochondrial biology. To increase the conceptual and experimental specificity in mitochondrial science, we propose a terminology system that distinguishes between (1) cell-dependent properties, (2) molecular features, (3) activities, (4) functions and (5) behaviours. A hierarchical terminology system that accurately captures the multifaceted nature of mitochondria will achieve three important outcomes. It will convey a more holistic picture of mitochondria as we teach the next generations of mitochondrial biologists, maximize progress in the rapidly expanding field of mitochondrial science, and also facilitate synergy with other disciplines. Improving specificity in the language around mitochondrial science is a step towards refining our understanding of the mechanisms by which this unique family of organelles contributes to cellular and organismal health.


Assuntos
Mitocôndrias , Mitocôndrias/fisiologia
14.
Nat Commun ; 14(1): 4726, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563104

RESUMO

The brain and behavior are under energetic constraints, limited by mitochondrial energy transformation capacity. However, the mitochondria-behavior relationship has not been systematically studied at a brain-wide scale. Here we examined the association between multiple features of mitochondrial respiratory chain capacity and stress-related behaviors in male mice with diverse behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain enzyme activities and mitochondrial DNA (mtDNA) content were deployed on 571 samples across 17 brain areas, defining specific patterns of mito-behavior associations. By applying multi-slice network analysis to our brain-wide mitochondrial dataset, we identified three large-scale networks of brain areas with shared mitochondrial signatures. A major network composed of cortico-striatal areas exhibited the strongest mitochondria-behavior correlations, accounting for up to 50% of animal-to-animal behavioral differences, suggesting that this mito-based network is functionally significant. The mito-based brain networks also overlapped with regional gene expression and structural connectivity, and exhibited distinct molecular mitochondrial phenotype signatures. This work provides convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct, behaviorally-relevant mitochondrial phenotypes exist across the male mouse brain.


Assuntos
DNA Mitocondrial , Mitocôndrias , Masculino , Camundongos , Animais , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Encéfalo/metabolismo , Fenótipo
15.
Commun Biol ; 6(1): 1179, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985891

RESUMO

The vast majority of Parkinson's disease cases are idiopathic. Unclear etiology and multifactorial nature complicate the comprehension of disease pathogenesis. Identification of early transcriptomic and metabolic alterations consistent across different idiopathic Parkinson's disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron vulnerability and primary disease mechanisms. In this study, we combine systems biology and data integration approaches to identify differences in transcriptomic and metabolic signatures between IPD patient and healthy individual-derived midbrain neural precursor cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural precursors. Furthermore, we show that IPD neural precursors endure mitochondrial metabolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-associated metabolic changes.


Assuntos
Células-Tronco Neurais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , NAD/metabolismo , Células-Tronco Neurais/metabolismo , Mitocôndrias/metabolismo , Neurônios Dopaminérgicos/metabolismo
16.
Psychoneuroendocrinology ; 155: 106322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423094

RESUMO

Stress triggers anticipatory physiological responses that promote survival, a phenomenon termed allostasis. However, the chronic activation of energy-dependent allostatic responses results in allostatic load, a dysregulated state that predicts functional decline, accelerates aging, and increases mortality in humans. The energetic cost and cellular basis for the damaging effects of allostatic load have not been defined. Here, by longitudinally profiling three unrelated primary human fibroblast lines across their lifespan, we find that chronic glucocorticoid exposure increases cellular energy expenditure by ∼60%, along with a metabolic shift from glycolysis to mitochondrial oxidative phosphorylation (OxPhos). This state of stress-induced hypermetabolism is linked to mtDNA instability, non-linearly affects age-related cytokines secretion, and accelerates cellular aging based on DNA methylation clocks, telomere shortening rate, and reduced lifespan. Pharmacologically normalizing OxPhos activity while further increasing energy expenditure exacerbates the accelerated aging phenotype, pointing to total energy expenditure as a potential driver of aging dynamics. Together, our findings define bioenergetic and multi-omic recalibrations of stress adaptation, underscoring increased energy expenditure and accelerated cellular aging as interrelated features of cellular allostatic load.


Assuntos
Alostase , Humanos , Alostase/fisiologia , Envelhecimento/fisiologia , Adaptação Fisiológica/fisiologia , Senescência Celular , Metabolismo Energético
17.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947643

RESUMO

Parkinson's disease (PD) is the most common movement disorder, characterized by the progressive loss of dopaminergic neurons from the nigrostriatal system. Currently, there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Mesenchymal stem cells (MSCs) are one of the most extensively studied cell sources for regenerative medicine applications, particularly due to the release of soluble factors and vesicles, known as secretome. The main goal of this work was to address the therapeutic potential of the secretome collected from bone-marrow-derived MSCs (BM-MSCs) using different models of the disease. Firstly, we took advantage of an optimized human midbrain-specific organoid system to model PD in vitro using a neurotoxin-induced model through 6-hydroxydopamine (6-OHDA) exposure. In vivo, we evaluated the effects of BM-MSC secretome comparing two different routes of secretome administration: intracerebral injections (a two-site single administration) against multiple systemic administration. The secretome of BM-MSCs was able to protect from dopaminergic neuronal loss, these effects being more evident in vivo. The BM-MSC secretome led to motor function recovery and dopaminergic loss protection; however, multiple systemic administrations resulted in larger therapeutic effects, making this result extremely relevant for potential future clinical applications.


Assuntos
Células-Tronco Mesenquimais , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Secretoma , Encéfalo , Oxidopamina , Organoides
18.
Commun Biol ; 6(1): 22, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635485

RESUMO

Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.


Assuntos
Doenças Mitocondriais , Fosforilação Oxidativa , Humanos , Longevidade , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
19.
Sci Data ; 9(1): 751, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463290

RESUMO

Aging is a process of progressive change. To develop biological models of aging, longitudinal datasets with high temporal resolution are needed. Here we report a multi-omics longitudinal dataset for cultured primary human fibroblasts measured across their replicative lifespans. Fibroblasts were sourced from both healthy donors (n = 6) and individuals with lifespan-shortening mitochondrial disease (n = 3). The dataset includes cytological, bioenergetic, DNA methylation, gene expression, secreted proteins, mitochondrial DNA copy number and mutations, cell-free DNA, telomere length, and whole-genome sequencing data. This dataset enables the bridging of mechanistic processes of aging as outlined by the "hallmarks of aging", with the descriptive characterization of aging such as epigenetic age clocks. Here we focus on bridging the gap for the hallmark mitochondrial metabolism. Our dataset includes measurement of healthy cells, and cells subjected to over a dozen experimental manipulations targeting oxidative phosphorylation (OxPhos), glycolysis, and glucocorticoid signaling, among others. These experiments provide opportunities to test how cellular energetics affect the biology of cellular aging. All data are publicly available at our webtool: https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/.


Assuntos
Envelhecimento , Fibroblastos , Humanos , Longevidade , Senescência Celular , Glicólise
20.
STAR Protoc ; 2(2): 100524, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027482

RESUMO

The lack of advanced in vitro models recapitulating the human brain complexity is still a major obstacle in brain development and neurological disease research. Here, we describe a robust protocol to derive human midbrain organoids from neuroepithelial stem cells. These complex 3D models are characterized by the presence of functional neurons, including dopaminergic neurons and glial cells, making them particularly attractive for the study of Parkinson disease. For complete details on the use and execution of this protocol, please refer to Monzel et al. (2017).


Assuntos
Técnicas de Cultura de Células/métodos , Mesencéfalo/citologia , Organoides/citologia , Células Cultivadas , Humanos , Modelos Neurológicos , Células-Tronco Neurais/citologia , Doença de Parkinson
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa