RESUMO
BACKGROUND AIMS: T cells engineered with synthetic receptors have delivered powerful therapeutic results for patients with relapsed/refractory hematologic malignancies. The authors have recently described the T-cell antigen coupler (TAC) receptor, which co-opts the endogenous T-cell receptor (TCR) and activates engineered T cells in an HLA-independent manner. Here the authors describe the evolution of a next-generation TAC receptor with a focus on developing a TAC-engineered T cell for multiple myeloma. METHODS: To optimize the TAC scaffold, the authors employed a bona fide antigen-binding domain derived from the B-cell maturation antigen-specific monoclonal antibody C11D5.3, which has been used successfully in the clinic. The authors first tested humanized versions of the UCHT1 domain, which is used by the TAC to co-opt the TCR. The authors further discovered that the signal peptide affected surface expression of the TAC receptor. Higher density of the TAC receptor enhanced target binding in vitro, which translated into higher levels of Lck at the immunological synapse and stronger proliferation when only receptor-ligand interactions were present. RESULTS: The authors observed that the humanized UCHT1 improved surface expression and in vivo efficacy. Using TAC T cells derived from both healthy donors and multiple myeloma patients, the authors determined that despite the influence of receptor density on early activation events and effector function, receptor density did not impact late effector functions in vitro, nor did the receptor density affect in vivo efficacy. CONCLUSIONS: The modifications to the TAC scaffold described herein represent an important step in the evolution of this technology, which tolerates a range of expression levels without impacting therapeutic efficacy.
Assuntos
Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/terapia , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos TRESUMO
CD8(+) T cells develop increased sensitivity following Ag experience, and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that >50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation, compared with <20% in central memory T cells (TCM). Immediately proximal to Lck signaling, we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore, we observed superior cytotoxic effector function in TEM compared with TCM, and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8(+) TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase, and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM, as well as increased cytotoxic effector function in TCM Collectively, this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity, and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/fisiologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Western Blotting , Linfócitos T CD8-Positivos/metabolismo , Citotoxicidade Imunológica/imunologia , Citometria de Fluxo , Humanos , Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Cadeias de Markov , Camundongos , Reação em Cadeia da Polimerase , Subpopulações de Linfócitos T/metabolismo , Imagem com Lapso de TempoRESUMO
BACKGROUND: Due to high melanoma immunogenicity, germline genetic variants in immune pathways have been studied for association with melanoma prognosis. However, limited candidate selection, inadequate power, or lack of independent validation have hampered the reproducibility of these prior findings, preventing personalised clinical applicability in melanoma prognostication. Our objective was to assess the prognostic utility of genetic variants in immunomodulatory pathways for prediction of melanoma clinical outcomes. METHODS: We genotyped 72 tag single nucleotide polymorphisms (SNPs) in 44 immunomodulatory genes in a population sample of 1022 melanoma patients and performed Cox regression analysis to test the association between SNPs and melanoma recurrence-free (RFS) and overall survival (OS). We have further investigated the most significant associations using a fine mapping strategy and followed with functional analyses in CD4+ T cells in a subset of 75 melanoma patients. RESULTS: The most significant associations were found with melanoma OS for rs3024493 in IL10 at chromosome 1q32.1 (heterozygous HR 0.58, 95% CI 0.39 to 0.86; p=0.0006), a variant previously shown to be linked with autoimmune conditions. Multiple additional SNPs at 1q32.1 were also nominally associated with OS confirming at least two independent association signals in this locus. In addition, we found rs3024493 associated with the downregulation of interleukin 10 (IL10) secretion in CD4+ T cells. CONCLUSIONS: We discovered novel associations of IL10 with melanoma survival at 1q32.1, suggesting this locus should be considered as a novel melanoma prognostic biomarker with potential for aiding melanoma patient management. Our findings also provide further support for an alternative role of IL10 in stimulation of anti-tumour immune response.
Assuntos
Cromossomos Humanos Par 1 , Interleucinas/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Humanos , Imunomodulação/genética , Interleucina-10/genética , Interleucina-10/imunologia , Interleucinas/imunologia , Masculino , Melanoma/imunologia , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Neoplasias Cutâneas/imunologia , Adulto Jovem , Melanoma Maligno CutâneoRESUMO
BACKGROUND: Matrix metalloproteinase-23 (MMP-23) can block the voltage-gated potassium channel Kv1.3, whose function is important for sustained Ca(2+) signaling during T cell activation. MMP-23 may also alter T cell activity and phenotype through cleavage of proteins affecting cytokine and chemokine signaling. We therefore tested the hypothesis that MMP-23 can negatively regulate the anti-tumor T cell response in human melanoma. METHODS: We characterized MMP-23 expression in primary melanoma patients who received adjuvant immunotherapy. We examined the association of MMP-23 with the anti-tumor immune response - as assessed by the prevalence of tumor-infiltrating lymphocytes and Foxp3(+) regulatory T cells. Further, we examined the association between MMP-23 expression and response to immunotherapy. Considering also an in trans mechanism, we examined the association of melanoma MMP-23 and melanoma Kv1.3 expression. RESULTS: Our data revealed an inverse association between primary melanoma MMP-23 expression and the anti-tumor T cell response, as demonstrated by decreased tumor-infiltrating lymphocytes (TIL) (P = 0.05), in particular brisk TILs (P = 0.04), and a trend towards an increased proportion of immunosuppressive Foxp3(+) regulatory T cells (P = 0.07). High melanoma MMP-23 expression is also associated with recurrence in patients treated with immune biologics (P = 0.037) but not in those treated with vaccines (P = 0.64). Further, high melanoma MMP-23 expression is associated with shorter periods of progression-free survival for patients receiving immune biologics (P = 0.025). On the other hand, there is no relationship between melanoma MMP-23 and melanoma Kv1.3 expression (P = 0.27). CONCLUSIONS: Our data support a role for MMP-23 as a potential immunosuppressive target in melanoma, as well as a possible biomarker for informing melanoma immunotherapies.
Assuntos
Imunoterapia , Metaloproteinases da Matriz/metabolismo , Melanoma/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Melanoma/imunologia , Melanoma/terapia , Pessoa de Meia-Idade , Linfócitos T Reguladores/imunologia , Adulto JovemRESUMO
Proximity-induction of cell-cell interactions via small molecules represents an emerging field in basic and translational sciences. Covalent anchoring of these small molecules represents a useful chemical strategy to enforce proximity; however, it remains largely unexplored for driving cell-cell interactions. In immunotherapeutic applications, bifunctional small molecules are attractive tools for inducing proximity between immune effector cells like T cells and tumor cells to induce tumoricidal function. We describe a two-component system composed of electrophilic bifunctional small molecules and paired synthetic antigen receptors (SARs) that elicit T cell activation. The molecules, termed covalent immune recruiters (CIRs), were designed to affinity label and covalently engage SARs. We evaluated the utility of CIRs to direct anti-tumor function of human T cells engineered with three biologically distinct classes of SAR. Irrespective of the electrophilic chemistry, tumor-targeting moiety, or SAR design, CIRs outperformed equivalent non-covalent bifunctional adapters, establishing a key role for covalency in maximizing functionality. We determined that covalent linkage enforced early T cell activation events in a manner that was dependent upon each SARs biology and signaling threshold. These results provide a platform to optimize universal SAR-T cell functionality and more broadly reveal new insights into how covalent adapters modulate cell-cell proximity-induction.
RESUMO
Human embryonic stem cell (hESC) cultures are heterogeneous and constituting paracrine signals are required to maintain pluripotency. The cellular interplay and dynamic nature of this heterogeneity is not understood. Here, long-term hESC imaging and tracking revealed that hESC heterogeneity is dynamic and hESC self-renewal is dependent on colony-proximal distributions of paracrine signals. Tracking of hESCs forming colonies revealed that a biologically distinct cell type arises at the colony periphery in the absence of feeders. Higher rates of cell death occur in these hESC-derived cells, leading to clonal selection of colony reestablishing cells. hESC-derived feeders co-transferred during passaging promoted rapid colony recovery and expansion and reduced overall clonal selection of self-renewing hESCs. Our findings demonstrate that hESC-derived feeders arise from a distinct subpopulation of hESCs that respond to paracrine cues at the colony periphery that are required to sustain and establish clonal hESC self-renewal.
Assuntos
Comunicação Celular , Ensaio de Unidades Formadoras de Colônias , Células-Tronco Embrionárias/citologia , Nicho de Células-Tronco/citologia , Animais , Morte Celular , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Células Clonais , Fibroblastos/citologia , Humanos , Imageamento Tridimensional , Camundongos , Modelos BiológicosRESUMO
A means of expanding islet cell mass is urgently needed to supplement the limited availability of donor islets of Langerhans for transplant. Live cell imaging of human islets in culture has the potential to identify the specific cells and processes involved in islet expansion. A novel imaging chamber was developed to facilitate long-term three-dimensional imaging of human islets during transformation. Islets have been induced to transform into duct-like epithelial cystic structures and revert back to glucose responsive endocrine cells under appropriate conditions (Jamal et al. Cell Death Differ. 2005 12:702-712). Here we aim to further our understanding by characterizing the process at a single cell level over time-essentially constructing a high resolution recorded history of each cell and its progeny during transformation and reversion. The imaging chamber enables high resolution imaging of three-dimensional islets while maintaining the structure of the islet cells and intercellular matrix components. A mathematical model was developed to validate the imaging chamber design by determining the required chamber dimensions to avoid introduction of oxygen and nutrient transport limitations. Human islets were embedded in collagen in the imaging chamber and differential interference contrast time course images were obtained at 3 min intervals. Immunofluorescent imaging confirmed that islet phenotype was maintained for at least 5 days during imaging. Analysis of the time courses confirms our ability to identify and track individual cells over time and to observe cell death and phenotype transformation in isolated human islets.