RESUMO
An ion chromatography system employing a low-cost three-dimensional printed absorbance detector for indirect ultraviolet detection towards portable phosphate analysis of environmental and industrial waters has been developed. The optical detection cell was fabricated using stereolithography three-dimensional printing of nanocomposite material. Chromatographic analysis and detection of phosphate were carried out using a CS5A 4 × 250 mm analytical column with indirect ultraviolet detection using a 255 nm light-emitting diode. Isocratic elution using a 0.6 mM potassium phthalate eluent combined with 1.44 mM sodium bicarbonate was employed at a flow rate of 0.75 mL/min. A linear calibration range of 0.5 to 30 mg/L PO4 3- applicable to environmental and wastewater analysis was achieved. For retention time and peak area repeatability, relative standard deviation values were 0.68 and 4.09%, respectively. Environmental and wastewater samples were analyzed with the optimized ion chromatography platform and the results were compared to values obtained by an accredited ion chromatograph. For the analysis of environmental samples, relative errors of <14 % were achieved. Recovery analysis was also carried out on both freshwater and wastewater samples and recovery results were within the acceptable range for water analysis using standard ion chromatography methods.
RESUMO
A miniaturized, flexible, and low-cost capillary ion chromatography system has been developed for anion analysis in water. The ion chromatography has an open platform, modular design, and allows for ease of modification. The assembled platform weighs ca. 0.6 kg and is 25 × 25 cm in size. Isocratic separation of common anions (F- , Cl- , NO2- , Br- , and NO3- ) could be achieved in under 15 min using sodium benzoate eluent at a flow rate of 3 µL/min, a packed capillary column (0.150 × 150 mm) containing Waters IC-Pak 10 µm anion exchange resin, and light-emitting diode based indirect UV detection. Several low UV light-emitting diodes were assessed in terms of sensitivity, including a new 235 nm light-emitting diode, however, the highest sensitivity was demonstrated using a 255 nm light-emitting diode. Linear calibration ranges applicable to typical natural water analysis were obtained. For retention time and peak area repeatability, relative standard deviation values ranged from 0.60-0.95 and 1.95-3.53%, respectively. Several water samples were analysed and accuracy (recovery) was demonstrated through analysis of a prepared mixed anion standard. Relative errors of -0.36, -1.25, -0.80, and -0.76% were obtained for fluoride, chloride, nitrite, and nitrate, respectively.
RESUMO
A portable and automated IC system with a dual-capability for the analysis of both fresh and saline environmental waters has been developed. Detection of nitrate in complex matrices such as seawater was achieved by the employment of an automated two-dimensional (heart-cut) IC method utilised in tandem with on-column matrix elimination, using a sodium chloride eluent. The system also demonstrated the capability to switch to a second mode of analysis, whereby direct one-dimensional IC analysis was employed to rapidly detect nitrite and nitrate in freshwater, with direct UV LED based absorption detection in under 3 minutes. Calibration curves using a 195 µL sample loop were generated for both freshwater and artificial seawater samples. For marine analysis, an analytical range of 0.1 mg L-1 - 40 mg L-1 NO3- was possible, while an analytical range (0.1 mg L-1 - 15 mg L-1 NO2-, 0.2 - 30 mg L-1 NO3-) appropriate for freshwater analysis was also achieved. Chromatographic repeatability for both marine and freshwater analysis was verified over 40 sequential runs with RSD values of < 1% demonstrated for both peak area and retention times for each mode of analysis. The selectivity of both methods was demonstrated with interference tests with common anions present in environmental waters. Recovery analysis was carried out on marine samples from Tramore Bay, Co. Waterford, Ireland, and the systems analytical performance was compared with that of an accredited IC following environmental sample analysis.
Assuntos
Cromatografia , Monitoramento Ambiental , Água Doce , Nitratos , Água do Mar , Monitoramento Ambiental/métodos , Água Doce/química , Nitratos/análise , Nitritos/análise , Água do Mar/química , Raios UltravioletaRESUMO
A cost-effective, automated and portable IC has been developed for in-situ analysis of nitrite and nitrate in natural waters. The system employed 3D printed pumps for eluent delivery and a deep-UV LED based optical detector. Isocratic separation and selective detection of nitrite and nitrate was achieved in under 3 min. The total weight of the analyser was ~11 kg, and included electronics along with a sample intake system for automated analysis. Linear calibration ranges were generated using different sample injection loops. Using a 150 µL loop, an analytical range (0.05-30 mg L-1 NO2-, 0.10-75 mg L-1 NO3-) suitable for freshwater analysis was generated, while using a 10 µL loop an analytical range (0.30-100 mg L-1 NO2-, 2.5-500 mg L-1 NO3-) suitable for effluent and domestic wastewater analysis was achieved. Chromatographic repeatability demonstrated by the system is graphically presented and RSD values of <4% were obtained in terms of peak area and retention time over 82 sequential runs. The system was deployed in-situ at multiple sites for varying deployment periods analysing septic tank water, effluent from a waste water treatment plant and stream water. The data generated by the in-situ system were comparable to grab sample data generated by accredited laboratory instrumentation.
RESUMO
A low cost, UV absorbance detector incorporating a 235â¯nm light emitting diode (LED) for portable ion chromatography has been designed and fabricated to achieve rapid, selective detection of nitrite and nitrate in natural waters. The optical cell was fabricated through micromilling and solvent vapour bonding of two layers of poly (methyl methacrylate) (PMMA). The cell was fitted within a 3D printed housing and the LED and photodiode were aligned using 3D printed holders. Isocratic separation and selective detection of nitrite and nitrate was achieved in under 2.5â¯min using the 235â¯nm LED based detector and custom electronics. The design of the new detector assembly allowed for effective and sustained operation of the deep UV LED source at a low current (<10â¯mA), maintaining consistent and low LED temperatures during operation, eliminating the need for a heat sink. The detector cell was produced at a fraction of the cost of commercial optical cells and demonstrated very low stray light (0.01%). For retention time and peak area repeatability, RSD values ranged from 0.75 to 1.10 % and 3.06-4.19 %, respectively. Broad dynamic linear ranges were obtained for nitrite and nitrate, with limits of detection at ppb levels. The analytical performance of the IC set up with optical cell was compared to that of an ISO-accredited IC through the analysis of five various water samples. Relative errors not exceeding 6.86% were obtained for all samples. The detector was also coupled to a low pressure, low cost syringe pump to assess the potential for use within a portable analytical system. RSD values for retention time and peak area using this simple configuration were <1.15% and <3.57% respectively, highlighting repeatability values comparable to those in which a commercial HPLC pump was used.