Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 20(19): 21196-213, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037244

RESUMO

Beam combining of phase-modulated kilowatt fiber amplifiers has generated considerable interest recently. We describe in the time domain how stimulated Brillouin scattering (SBS) is generated in an optical fiber under phase-modulated laser conditions, and we analyze different phase modulation techniques. The temporal and spatial evolutions of the acoustic phonon, laser, and Stokes fields are determined by solving the coupled three-wave interaction system. Numerical accuracy is verified through agreement with the analytical solution for the un-modulated case and through the standard photon conservation relation for counter-propagating optical fields. As a test for a modulated laser, a sinusoidal phase modulation is examined for a broad range of modulation amplitudes and frequencies. We show that, at high modulation frequencies, our simulations agree with the analytical results obtained from decomposing the optical power into its frequency components. At low modulation frequencies, there is a significant departure due to the appreciable cross talk among the laser and Stokes sidebands. We also examine SBS suppression for a white noise source and show significant departures for short fibers from analytically derived formulas. Finally, SBS suppression through the application of pseudo-random bit sequence modulation is examined for various patterns. It is shown that for a fiber length of 9 m the patterns at or near n=7 provide the best mitigation of SBS with suppression factors approaching 17 dB at a modulation frequency of 5 GHz.

2.
Appl Opt ; 41(30): 6399-409, 2002 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-12396192

RESUMO

A configuration of N coated mirrors or mirror pairs is described that has the potential to coherently combine 2N single-frequency phase-locked diffraction-limited polarized optical beams to form a single diffraction-limited beam. The application to beam combination of fiber amplifiers is discussed.

3.
Appl Opt ; 43(11): 2353-9, 2004 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-15098839

RESUMO

We show an experimental proof of concept for a nonresonant recirculation method to increase the conversion efficiency of second-harmonic generation (SHG) with type II phase matching. As much as a factor-of-4 efficiency increase compared with that of single-pass SHG is possible, provided that the recirculation length is within the coherence length of the pump laser. Nonresonant recirculating SHG may be valuable in systems in which intracavity doubling is not practicable, such as high-power cw bulk solid-state or fiber lasers.

4.
Opt Lett ; 28(22): 2219-21, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14649947

RESUMO

A 20-W all-solid-state continuous-wave single-frequency source tuned to the sodium D2a line at 589.159 nm has been developed for adaptive optical systems. This source is based on sum-frequency mixing two injection-locked Nd:YAG lasers in lithium triborate in a doubly resonant external cavity. Injection locking the Nd:YAG lasers not only ensures single-frequency operation but also allows the use of a single rf local oscillator for Pound-Drever-Hall locking both the injection-slave and the sum-frequency cavities. We observe power-conversion efficiencies in excess of 55% and a linearly polarized diffraction-limited output tunable across the sodium D2 line (589.156 to 589.160 nm) with no change in output power and with high amplitude and pointing stability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa