RESUMO
Materials with hierarchical architectures that combine soft and hard material domains with coalesced interfaces possess superior properties compared with their homogeneous counterparts1-4. These architectures in synthetic materials have been achieved through deterministic manufacturing strategies such as 3D printing, which require an a priori design and active intervention throughout the process to achieve architectures spanning multiple length scales5-9. Here we harness frontal polymerization spin mode dynamics to autonomously fabricate patterned crystalline domains in poly(cyclooctadiene) with multiscale organization. This rapid, dissipative processing method leads to the formation of amorphous and semi-crystalline domains emerging from the internal interfaces generated between the solid polymer and the propagating cure front. The size, spacing and arrangement of the domains are controlled by the interplay between the reaction kinetics, thermochemistry and boundary conditions. Small perturbations in the fabrication conditions reproducibly lead to remarkable changes in the patterned microstructure and the resulting strength, elastic modulus and toughness of the polymer. This ability to control mechanical properties and performance solely through the initial conditions and the mode of front propagation represents a marked advancement in the design and manufacturing of advanced multiscale materials.
RESUMO
Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states.
Assuntos
Citoplasma/química , Microscopia de Força Atômica/métodos , Animais , Fenômenos Biomecânicos , Embrião de Mamíferos/citologia , Fibroblastos/química , Camundongos , Proteínas/química , Vimentina/químicaRESUMO
During infection, animals exhibit adaptive changes in physiology and behaviour aimed at increasing survival. Although many causes of infection exist, they trigger similar stereotyped symptoms such as fever, warmth-seeking, loss of appetite and fatigue1,2. Yet exactly how the nervous system alters body temperature and triggers sickness behaviours to coordinate responses to infection remains unknown. Here we identify a previously uncharacterized population of neurons in the ventral medial preoptic area (VMPO) of the hypothalamus that are activated after sickness induced by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid. These neurons are crucial for generating a fever response and other sickness symptoms such as warmth-seeking and loss of appetite. Single-nucleus RNA-sequencing and multiplexed error-robust fluorescence in situ hybridization uncovered the identity and distribution of LPS-activated VMPO (VMPOLPS) neurons and non-neuronal cells. Gene expression and electrophysiological measurements implicate a paracrine mechanism in which the release of immune signals by non-neuronal cells during infection activates nearby VMPOLPS neurons. Finally, we show that VMPOLPS neurons exert a broad influence on the activity of brain areas associated with behavioural and homeostatic functions and are synaptically and functionally connected to circuit nodes controlling body temperature and appetite. Together, these results uncover VMPOLPS neurons as a control hub that integrates immune signals to orchestrate multiple sickness symptoms in response to infection.
Assuntos
Apetite , Febre , Infecções , Neurônios , Área Pré-Óptica , Animais , Apetite/efeitos dos fármacos , Depressores do Apetite/farmacologia , Febre/induzido quimicamente , Febre/fisiopatologia , Hibridização in Situ Fluorescente , Infecções/induzido quimicamente , Infecções/fisiopatologia , Lipopolissacarídeos , Neurônios/efeitos dos fármacos , Comunicação Parácrina , Poli I-C , Área Pré-Óptica/citologia , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/fisiologiaRESUMO
The introduction of molecular complexity in an atom- and step-efficient manner remains an outstanding goal in modern synthetic chemistry. Artificial biosynthetic pathways are uniquely able to address this challenge by using enzymes to carry out multiple synthetic steps simultaneously or in a one-pot sequence1-3. Conducting biosynthesis ex vivo further broadens its applicability by avoiding cross-talk with cellular metabolism and enabling the redesign of key biosynthetic pathways through the use of non-natural cofactors and synthetic reagents4,5. Here we describe the discovery and construction of an enzymatic cascade to MK-1454, a highly potent stimulator of interferon genes (STING) activator under study as an immuno-oncology therapeutic6,7 (ClinicalTrials.gov study NCT04220866 ). From two non-natural nucleotide monothiophosphates, MK-1454 is assembled diastereoselectively in a one-pot cascade, in which two thiotriphosphate nucleotides are simultaneously generated biocatalytically, followed by coupling and cyclization catalysed by an engineered animal cyclic guanosine-adenosine synthase (cGAS). For the thiotriphosphate synthesis, three kinase enzymes were engineered to develop a non-natural cofactor recycling system in which one thiotriphosphate serves as a cofactor in its own synthesis. This study demonstrates the substantial capacity that currently exists to use biosynthetic approaches to discover and manufacture complex, non-natural molecules.
Assuntos
Guanosina , Nucleotidiltransferases , Adenosina , Animais , Interferons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de SinaisRESUMO
The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as axonemal microtubule growth and stabilization in polarized epithelia, are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/ß-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.
Assuntos
Cílios , Tubulina (Proteína) , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Células Epiteliais/metabolismoRESUMO
The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.
RESUMO
Mechanophores are molecular motifs that respond to mechanical perturbance with targeted chemical reactions toward desirable changes in material properties. A large variety of mechanophores have been investigated, with applications focusing on functional materials, such as strain/stress sensors, nanolithography, and self-healing polymers, among others. The responses of engineered mechanophores, such as light emittance, change in fluorescence, and generation of free radicals (FRs), have potential for bioimaging and therapy. However, the biomedical applications of mechanophores are not well explored. Herein, we report an in vitro demonstration of an FR-generating mechanophore embedded in biocompatible hydrogels for noninvasive cancer therapy. Controlled by high-intensity focused ultrasound (HIFU), a clinically proven therapeutic technique, mechanophores were activated with spatiotemporal precision to generate FRs that converted to reactive oxygen species (ROS) to effectively kill tumor cells. The mechanophore hydrogels exhibited no cytotoxicity under physiological conditions. Upon activation with HIFU sonication, the therapeutic efficacies in killing in vitro murine melanoma and breast cancer tumor cells were comparable with lethal doses of H2O2 This process demonstrated the potential for mechanophore-integrated HIFU combination as a noninvasive cancer treatment platform, named "mechanochemical dynamic therapy" (MDT). MDT has two distinct advantages over other noninvasive cancer treatments, such as photodynamic therapy (PDT) and sonodynamic therapy (SDT). 1) MDT is ultrasound based, with larger penetration depth than PDT. 2) MDT does not rely on sonosensitizers or the acoustic cavitation effect, both of which are necessary for SDT. Taking advantage of the strengths of mechanophores and HIFU, MDT can provide noninvasive treatments for diverse cancer types.
Assuntos
Fenômenos Biomecânicos , Biopolímeros/química , Hidrogéis/química , Ondas Ultrassônicas , Animais , Compostos Azo/química , Humanos , Hidrogéis/síntese química , Melanoma Experimental , Camundongos , Neoplasias/terapia , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Termodinâmica , Terapia por Ultrassom/métodosRESUMO
The cardiac thin filament proteins troponin and tropomyosin control actomyosin formation and thus cardiac contractility. Calcium binding to troponin changes tropomyosin position along the thin filament, allowing myosin head binding to actin required for heart muscle contraction. The thin filament regulatory proteins are hot spots for genetic mutations causing heart muscle dysfunction. While much of the thin filament structure has been characterized, critical regions of troponin and tropomyosin involved in triggering conformational changes remain unresolved. A poorly resolved region, helix-4 (H4) of troponin I, is thought to stabilize tropomyosin in a position on actin that blocks actomyosin interactions at low calcium concentrations during muscle relaxation. We have proposed that contact between glutamate 139 on tropomyosin and positively charged residues on H4 leads to blocking-state stabilization. In this study, we attempted to disrupt these interactions by replacing E139 with lysine (E139K) to define the importance of this residue in thin filament regulation. Comparison of mutant and wild-type tropomyosin was carried out using in-vitro motility assays, actin co-sedimentation, and molecular dynamics simulations to determine perturbations in troponin-tropomyosin function caused by the tropomyosin mutation. Motility assays revealed that mutant thin filaments moved at higher velocity at low calcium with increased calcium sensitivity demonstrating that tropomyosin residue 139 is vital for proper tropomyosin-mediated inhibition during relaxation. Similarly, molecular dynamic simulations revealed a mutation-induced decrease in interaction energy between tropomyosin-E139K and troponin I (R170 and K174). These results suggest that salt-bridge stabilization of tropomyosin position by troponin IH4 is essential to prevent actomyosin interactions during cardiac muscle relaxation.
Assuntos
Ácido Glutâmico , Tropomiosina , Actinas , Actomiosina , Troponina I , CálcioRESUMO
In polymer mechanochemistry, mechanophores are specific molecular units within the macromolecular backbone that are particularly sensitive to tension. To facilitate understanding of this selective responsiveness, we introduce the restoring force triangle (RFT). The RFT is a mnemonic device intended to provide intuitive insight into how external tensile forces (i.e., stretching) can selectively activate scissile bonds, thereby initiating mechanically driven chemical reactions. The RFT utilizes two easily computable parameters: the effective bond stiffness constant, which measures a bond's resistance to elongation, and the bond dissociation energy, which is the energy required to break a bond. These parameters help categorize reactivity into thermal and mechanical domains, providing a useful framework for developing new mechanophores that are responsive to force but thermally stable. The RFT helps chemists intuitively understand how tensile force contributes to the activation of a putative mechanophore, facilitating the development of mechanochemical reactions and mechano-responsive materials.
RESUMO
Aggregation-induced emission luminogens (AIEgens) that respond to mechanical force are increasingly used as force probes, memory devices, and advanced security systems. Most of the known mechanisms to modulate mechanoresponsive AIEgens have been based on changes in aggregation states, involving only physical alterations. Instances that employ covalent bond cleavage are still rare. We have developed a novel mechanochemical uncaging strategy to unveil AIEgens with diverse emission characteristics using engineered norborn-2-en-7-one (NEO) mechanophores. These NEO mechanophores were covalently integrated into polymer molecules and activated in both the solution and solid states. This activation resulted in highly tunable fluorescence upon immobilization through solidification or aggregation, producing blue, green, yellow, and orange-red emissions. By designing the caged and uncaged forms as donor-acceptor pairs for Förster resonance energy transfer (FRET), we achieved multicolor mechanofluorescence, effectively broadening the color spectrum to include white emission. Additionally, we computationally explored the electronic structures of activated NEOs, providing insights into the observed regiochemical effects of the substituents. This understanding, together with the novel luminogenic characteristics of the caged and activated species, provides a highly tunable reporter that traces progress with continuous color evolution. This advancement paves the way for future applications of mechanoresponsive materials in areas like damage detection and bioimaging.
RESUMO
The rate of frontal ring-opening metathesis polymerization (FROMP) using the Grubbs generation II catalyst is impacted by both the concentration and choice of monomers and inhibitors, usually organophosphorus derivatives. Herein we report a data-science-driven workflow to evaluate how these factors impact both the rate of FROMP and how long the formulation of the mixture is stable (pot life). Using this workflow, we built a classification model using a single-node decision tree to determine how a simple phosphine structural descriptor (Vbur-near) can bin long versus short pot life. Additionally, we applied a nonlinear kernel ridge regression model to predict how the inhibitor and selection/concentration of comonomers impact the FROMP rate. The analysis provides selection criteria for material network structures that span from highly cross-linked thermosets to non-cross-linked thermoplastics as well as degradable and nondegradable materials.
RESUMO
Frontal ring-opening metathesis polymerization (FROMP) involves a self-perpetuating exothermic reaction, which enables the rapid and energy-efficient manufacturing of thermoset polymers and composites. Current state-of-the-art reaction-diffusion FROMP models rely on a phenomenological description of the olefin metathesis kinetics, limiting their ability to model the governing thermo-chemical FROMP processes. Furthermore, the existing models are unable to predict the variations in FROMP kinetics with changes in the resin composition and as a result are of limited utility toward accelerated discovery of new resin formulations. In this work, we formulate a chemically meaningful model grounded in the established mechanism of ring-opening metathesis polymerization (ROMP). Our study aims to validate the hypothesis that the ROMP mechanism, applicable to monomer-initiator solutions below 100 °C, remains valid under the nonideal conditions encountered in FROMP, including ambient to >200 °C temperatures, sharp temperature gradients, and neat monomer environments. Through extensive simulations, we demonstrate that our mechanism-based model accurately predicts the FROMP behavior across various resin compositions, including polymerization front velocities and thermal characteristics (e.g., Tmax). Additionally, we introduce a semi-inverse workflow that predicts FROMP behavior from a single experimental data point. Notably, the physiochemical parameters utilized in our model can be obtained through DFT calculations and minimal experiments, highlighting the model's potential for rapid screening of new FROMP chemistries in pursuit of thermoset polymers with superior thermo-chemo-mechanical properties.
RESUMO
In this study, we explore the distinct reactivity patterns between frontal ring-opening metathesis polymerization (FROMP) and room-temperature solventless ring-opening metathesis polymerization (ROMP). Despite their shared mechanism, we find that FROMP is less sensitive to inhibitor concentration than room-temperature ROMP. By increasing the initiator-to-monomer ratio for a fixed inhibitor/initiator quantity, we find reduction in the ROMP background reactivity at room temperature (i.e., increased resin pot life). At elevated temperatures where inhibitor dissociation prevails, accelerated frontal polymerization rates are observed because of the concentrated presence of the initiator. Surprisingly, the strategy of employing higher initiator loading enhances both pot life and front speeds, which leads to FROMP rates exceeding prior reported values by over 5 times. This counterintuitive behavior is attributed to an increase in the proximity of the inhibitor to the initiator within the bulk resin and to whether the temperature favors coordination or dissociation of the inhibitor. A rapid method was developed for assessing resin pot life, and a straightforward model for active initiator behavior was established. Modified resin systems enabled direct ink writing of robust thermoset structures at rates much faster than previously possible.
RESUMO
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches â¼9.0 s-1 at â¼1520 pN, and each reaction of a single TBO domain releases a stored length of â¼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.
RESUMO
Fast-paced pharmaceutical process developments (e.g., high-throughput experimentation, directed evolution, and machine learning) involve the introduction of fast, sensitive, and accurate analytical assays using limited sample volumes. In recent years, acoustic droplet ejection (ADE) coupled with an open port interface has been invented as a sampling technology for mass spectrometry, providing high-throughput nanoliter analytical measurements directly from the standard microplates. Herein, we introduce an ADE-multiple reaction monitoring-mass spectrometry (ADE-MRM-MS) workflow to accelerate pharmaceutical process research and development (PR&D). This systematic workflow outlines the selection of MRM transitions and optimization of assay parameters in a data-driven manner using rapid measurements (1 sample/s). The synergy between ADE sampling and MRM analysis enables analytical assays with excellent sensitivity, selectivity, and speed for PR&D reaction screenings. This workflow was utilized to develop new ADE-MRM-MS assays guiding a variety of industrial processes, including (1) screening of Ni-based catalysts for C-N cross-coupling reaction at 1 Hz and (2) high-throughput regioisomer analysis-enabled enzyme library screening for peptide ligation reaction. ADE-MRM-MS assays were demonstrated to deliver accurate results that are comparable to conventional liquid chromatography (LC) experiments while providing >100-fold throughput enhancement.
Assuntos
Desenvolvimento de Medicamentos , Acústica , Espectrometria de Massas/métodos , Peptídeos , Fluxo de TrabalhoRESUMO
Thermoset polymers and composite materials are integral to today's aerospace, automotive, marine and energy industries and will be vital to the next generation of lightweight, energy-efficient structures in these enterprises, owing to their excellent specific stiffness and strength, thermal stability and chemical resistance1-5. The manufacture of high-performance thermoset components requires the monomer to be cured at high temperatures (around 180 °C) for several hours, under a combined external pressure and internal vacuum 6 . Curing is generally accomplished using large autoclaves or ovens that scale in size with the component. Hence this traditional curing approach is slow, requires a large amount of energy and involves substantial capital investment6,7. Frontal polymerization is a promising alternative curing strategy, in which a self-propagating exothermic reaction wave transforms liquid monomers to fully cured polymers. We report here the frontal polymerization of a high-performance thermoset polymer that allows the rapid fabrication of parts with microscale features, three-dimensional printed structures and carbon-fibre-reinforced polymer composites. Precise control of the polymerization kinetics at both ambient and elevated temperatures allows stable monomer solutions to transform into fully cured polymers within seconds, reducing energy requirements and cure times by several orders of magnitude compared with conventional oven or autoclave curing approaches. The resulting polymer and composite parts possess similar mechanical properties to those cured conventionally. This curing strategy greatly improves the efficiency of manufacturing of high-performance polymers and composites, and is widely applicable to many industries.
RESUMO
The formation of carbon-carbon bonds by pinacol coupling of aldehydes and ketones requires a large negative reduction potential, often realized with a stoichiometric reducing reagent. Here, we use solvated electrons generated via a plasma-liquid process. Parametric studies with methyl-4-formylbenzoate reveal that selectivity over the competing reduction to the alcohol requires careful control over mass transport. The generality is demonstrated with benzaldehydes, benzyl ketones, and furfural. A reaction-diffusion model explains the observed kinetics, and ab initio calculations provide insight into the mechanism. This study opens the possibility of a metal-free, electrically-powered, sustainable method for reductive organic reactions.
RESUMO
Convenient strategies for the deconstruction and reprocessing of thermosets could improve the circularity of these materials, but most approaches developed to date do not involve established, high-performance engineering materials. Here, we show that bifunctional silyl ether, i.e., R'O-SiR2-OR'', (BSE)-based comonomers generate covalent adaptable network analogues of the industrial thermoset polydicyclopentadiene (pDCPD) through a novel BSE exchange process facilitated by the low-cost food-safe catalyst octanoic acid. Experimental studies and density functional theory calculations suggest an exchange mechanism involving silyl ester intermediates with formation rates that strongly depend on the Si-R2 substituents. As a result, pDCPD thermosets manufactured with BSE comonomers display temperature- and time-dependent stress relaxation as a function of their substituents. Moreover, bulk remolding of pDCPD thermosets is enabled for the first time. Altogether, this work presents a new approach toward the installation of exchangeable bonds into commercial thermosets and establishes acid-catalyzed BSE exchange as a versatile addition to the toolbox of dynamic covalent chemistry.
RESUMO
Droplet microfluidics enables high-throughput experimentation and screening by encapsulating chemical and biochemical samples in aqueous droplets segmented by an immiscible fluid. In such experiments, it is critical that each droplet remains chemically distinct. A common approach is to use fluorinated oils with surfactants to stabilize droplets. However, some small molecules have been observed to transport between droplets under these conditions. Attempts to study and mitigate this effect have relied on evaluating crosstalk using fluorescent molecules, which inherently limits the analyte scope and conclusions drawn about the mechanism of the effect. In this work, transport of low molecular weight compounds between droplets was investigated using electrospray ionization mass spectrometry (ESI-MS) for measurement. The use of ESI-MS significantly expands the scope of analytes that can be tested. We tested 36 structurally diverse analytes that were found to exhibit crosstalk ranging from negligible to complete transfer using HFE 7500 as the carrier fluid and 008-fluorosurfactant as a surfactant. Using this data set, we developed a predictive tool showing that high log P and log D values correlate with high crosstalk, and high polar surface area and log S correlate with low crosstalk. We then investigated several carrier fluids, surfactants, and flow conditions. It was discovered that transport is strongly dependent on all of these factors and that experimental design and surfactant tailoring can reduce carryover. We present evidence for mixed crosstalk mechanisms including both micellar and oil partitioning transfer. By understanding the driving mechanisms, surfactant and oil compositions can be designed to better reduce chemical transport for screening workflows.
RESUMO
OBJECTIVES: To evaluate pre-analytical challenges related to high-volume central laboratory SARS-CoV-2 antigen testing with a prototype qualitative SARS-CoV-2 antigen immunoassay run on the automated Abbott ARCHITECT instrument. METHODS: Contrived positive and negative specimens and de-identified nasal and nasopharyngeal specimens in transport media were used to evaluate specimen and reagent on-board stability, assay analytical performance and interference, and clinical performance. RESULTS: TCID50/mL values were similar for specimens in various transport media. Inactivated positive clinical specimens and viral lysate (USA-WA1/2020) were positive on the prototype immunoassay. Within-laboratory imprecision was ≤0.10 SD (<1.00 S/C) with a ≤10% CV (≥1.00 S/C). Assay reagents were stable on board the instrument for 14 days. No high-dose hook effect was observed with a SARS-CoV-2 stock of Ct 13.0 (RLU>1.0 × 106). No interference was observed from mucin, whole blood, 12 drugs, and more than 20 cross-reactants. While specimen stability was limited at room temperature for specimens with or without viral inactivation, a single freeze/thaw cycle or long-term storage (>30 days) at -20 °C did not adversely impact specimen stability or assay performance. Specificity of the prototype SARS-CoV-2 antigen immunoassay was ≥98.5% and sensitivity was ≥89.5% across two ARCHITECT instruments. Assay sensitivity was inversely correlated with Ct and was similar to that reported for the Roche Elecsys® SARS-CoV-2 Ag immunoassay. CONCLUSIONS: The prototype SARS-CoV-2 antigen ARCHITECT immunoassay is sensitive and specific for detection of SARS-CoV-2 in nasal and nasopharyngeal specimens. Endogenous proteases in mucus may degrade the target antigen, which limits specimen storage and transport times and complicates assay workflow.