RESUMO
OBJECTIVE: Advanced-stage high-grade serous ovarian cancer (HGSOC) remains a deadly gynecologic malignancy with high rates of disease recurrence and limited, effective therapeutic options for patients. There is a significant need to better stratify HGSOC patients into platinum refractory (PRF) vs. sensitive (PS) cohorts at baseline to improve therapeutic responses and survival outcomes for PRF HGSOC. METHODS: We performed NanoString for GeoMx Digital Spatial Profile (G-DSP) multiplex protein analysis on PRF and PS tissue microarrays (TMAs) to study the bidirectional communication of cancer cells with immune cells in the tumor microenvironment (TME) of HGSOC. We demonstrate robust stratification of PRF and PS tumors at baseline using multiplex spatial proteomic biomarkers with implications for tailoring subsequent therapy. RESULTS: PS patients had elevated apoptotic and anti-tumor immune profiles, while PRF patients had dual AKT1 and WNT signaling with immunosuppressive profiles. We found that dual activity of AKT1 and WNT signaling supported the exclusion of immune cells, specifically tumor infiltrating lymphocytes (TILs), from the TME in PRF tumors, and this was not observed in PS tumors. The exclusion of immune cells from the TME of PRF tumors corresponded to abnormal endothelial cell structure in tumors with dual AKT1 and WNT signaling activity. CONCLUSIONS: We believe our findings provide improved understanding of tumor-immune crosstalk in HGSOC TME highlighting the importance of the relationship between AKT and WNT pathways, immune cell function, and platinum response in HGSOC.