Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(47): E11128-E11137, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30385632

RESUMO

Osteosarcoma (OS), the most common primary bone tumor, is highly metastatic with high chemotherapeutic resistance and poor survival rates. Using induced pluripotent stem cells (iPSCs) generated from Li-Fraumeni syndrome (LFS) patients, we investigate an oncogenic role of secreted frizzled-related protein 2 (SFRP2) in p53 mutation-associated OS development. Interestingly, we find that high SFRP2 expression in OS patient samples correlates with poor survival. Systems-level analyses identified that expression of SFRP2 increases during LFS OS development and can induce angiogenesis. Ectopic SFRP2 overexpression in normal osteoblast precursors is sufficient to suppress normal osteoblast differentiation and to promote OS phenotypes through induction of oncogenic molecules such as FOXM1 and CYR61 in a ß-catenin-independent manner. Conversely, inhibition of SFRP2, FOXM1, or CYR61 represses the tumorigenic potential. In summary, these findings demonstrate the oncogenic role of SFRP2 in the development of p53 mutation-associated OS and that inhibition of SFRP2 is a potential therapeutic strategy.


Assuntos
Neoplasias Ósseas/genética , Carcinogênese/genética , Síndrome de Li-Fraumeni/patologia , Proteínas de Membrana/genética , Osteossarcoma/genética , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proteína Rica em Cisteína 61/antagonistas & inibidores , Proteína Rica em Cisteína 61/genética , Proteína Forkhead Box M1/antagonistas & inibidores , Proteína Forkhead Box M1/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Li-Fraumeni/genética , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Osteoblastos/citologia , Osteossarcoma/patologia
2.
Proc Natl Acad Sci U S A ; 108(6): 2468-73, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21252303

RESUMO

To clarify the molecular pathways governing hematopoietic stem cell (HSC) development, we screened a fetal liver (FL) HSC cDNA library and identified a unique gene, hematopoietic expressed mammalian polycomb (hemp), encoding a protein with a zinc-finger domain and four malignant brain tumor (mbt) repeats. To investigate its biological role, we generated mice lacking Hemp (hemp(-/-)). Hemp(-/-) mice exhibited a variety of skeletal malformations and died soon after birth. In the FL, hemp was preferentially expressed in the HSC and early progenitor cell fractions, and analyses of fetal hematopoiesis revealed that the number of FL mononuclear cells, including HSCs, was reduced markedly in hemp(-/-) embryos, especially during early development. In addition, colony-forming and competitive repopulation assays demonstrated that the proliferative and reconstitution abilities of hemp(-/-) FL HSCs were significantly impaired. Microarray analysis revealed alterations in the expression levels of several genes implicated in hematopoietic development and differentiation in hemp(-/-) FL HSCs. These results demonstrate that Hemp, an mbt-containing protein, plays essential roles in HSC function and skeletal formation. It is also hypothesized that Hemp might be involved in certain congenital diseases, such as Klippel-Feil anomaly.


Assuntos
Desenvolvimento Ósseo/fisiologia , Osso e Ossos/embriologia , Proteínas Cromossômicas não Histona/metabolismo , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular/fisiologia , Proteínas Cromossômicas não Histona/genética , Embrião de Mamíferos/citologia , Perfilação da Expressão Gênica , Hematopoese/fisiologia , Síndrome de Klippel-Feil/genética , Síndrome de Klippel-Feil/metabolismo , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Repressoras/genética
3.
Blood ; 118(9): 2420-9, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21652676

RESUMO

The role of Wnt signaling in hematopoietic stem cell fate decisions remains controversial. We elected to dysregulate Wnt signaling from the perspective of the stem cell niche by expressing the pan Wnt inhibitor, Wnt inhibitory factor 1 (Wif1), specifically in osteoblasts. Here we report that osteoblastic Wif1 overexpression disrupts stem cell quiescence, leading to a loss of self-renewal potential. Primitive stem and progenitor populations were more proliferative and elevated in bone marrow and spleen, manifesting an impaired ability to maintain a self-renewing stem cell pool. Exhaustion of the stem cell pool was apparent only in the context of systemic stress by chemotherapy or transplantation of wild-type stem cells into irradiated Wif1 hosts. Paradoxically this is mediated, at least in part, by an autocrine induction of canonical Wnt signaling in stem cells on sequestration of Wnts in the environment. Additional signaling pathways are dysregulated in this model, primarily activated Sonic Hedgehog signaling in stem cells as a result of Wif1-induced osteoblastic expression of Sonic Hedgehog. We find that dysregulation of the stem cell niche by overexpression of an individual component impacts other unanticipated regulatory pathways in a combinatorial manner, ultimately disrupting niche mediated stem cell fate decisions.


Assuntos
Proteínas da Matriz Extracelular/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/patologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Osteoblastos/metabolismo , Proteínas Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Transplante de Medula Óssea , Ciclo Celular , Divisão Celular , Células Cultivadas/metabolismo , Proteínas da Matriz Extracelular/deficiência , Fluoruracila/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/fisiologia , Hematopoese/genética , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Camundongos , Camundongos Congênicos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/fisiologia , Transdução de Sinais , Nicho de Células-Tronco , Células Estromais/metabolismo
4.
Ann N Y Acad Sci ; 1466(1): 59-72, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31621095

RESUMO

The induction of hematopoiesis in various cell types via transcription factor (TF) reprogramming has been demonstrated by several strategies. The eventual goal of these approaches is to generate a product for unmet needs in hematopoietic cell transplantation therapies. The most successful strategies hew closely to clues provided from developmental hematopoiesis in terms of factor expression and environmental cues. In this review, we aim to summarize the TFs that play important roles in developmental hematopoiesis primarily and to also touch on adult hematopoiesis. Several aspects of cellular and molecular biology coalesce in this process, with TFs and surrounding cellular signals playing a major role in the overall development of the hematopoietic lineage. We attempt to put these elements into the context of reprogramming and highlight their roles.


Assuntos
Microambiente Celular/fisiologia , Crescimento e Desenvolvimento/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Crescimento e Desenvolvimento/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Nicho de Células-Tronco/fisiologia
5.
Stem Cell Reports ; 14(4): 561-574, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32243840

RESUMO

Hematopoietic stem cells (HSCs) exist in a dormant state and progressively lose regenerative potency as they undergo successive divisions. Why this functional decline occurs and how this information is encoded is unclear. To better understand how this information is stored, we performed RNA sequencing on HSC populations differing only in their divisional history. Comparative analysis revealed that genes upregulated with divisions are enriched for lineage genes and regulated by cell-cycle-associated transcription factors, suggesting that proliferation itself drives lineage priming. Downregulated genes are, however, associated with an HSC signature and targeted by the Polycomb Repressive Complex 2 (PRC2). The PRC2 catalytic subunits Ezh1 and Ezh2 promote and suppress the HSC state, respectively, and successive divisions cause a switch from Ezh1 to Ezh2 dominance. We propose that cell divisions drive lineage priming and Ezh2 accumulation, which represses HSC signature genes to consolidate information on divisional history into memory.


Assuntos
Divisão Celular , Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Divisão Celular/genética , Linhagem da Célula/genética , Autorrenovação Celular , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Regulação da Expressão Gênica , Hematopoese/genética , Homeostase , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
6.
J Vis Exp ; (153)2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31736500

RESUMO

The cellular and molecular mechanisms underlying specification of human hematopoietic stem cells (HSCs) remain elusive. Strategies to recapitulate human HSC emergence in vitro are required to overcome limitations in studying this complex developmental process. Here, we describe a protocol to generate hematopoietic stem and progenitor-like cells from human dermal fibroblasts employing a direct cell reprogramming approach. These cells transit through a hemogenic intermediate cell-type, resembling the endothelial-to-hematopoietic transition (EHT) characteristic of HSC specification. Fibroblasts were reprogrammed to hemogenic cells via transduction with GATA2, GFI1B and FOS transcription factors. This combination of three factors induced morphological changes, expression of hemogenic and hematopoietic markers and dynamic EHT transcriptional programs. Reprogrammed cells generate hematopoietic progeny and repopulate immunodeficient mice for three months. This protocol can be adapted towards the mechanistic dissection of the human EHT process as exemplified here by defining GATA2 targets during the early phases of reprogramming. Thus, human hemogenic reprogramming provides a simple and tractable approach to identify novel markers and regulators of human HSC emergence. In the future, faithful induction of hemogenic fate in fibroblasts may lead to the generation of patient-specific HSCs for transplantation.


Assuntos
Reprogramação Celular , Fibroblastos/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Humanos , Camundongos , Fatores de Transcrição/genética
7.
FEBS Lett ; 593(23): 3266-3287, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557312

RESUMO

Transcription factor (TF)-based reprogramming of somatic tissues holds great promise for regenerative medicine. Previously, we demonstrated that the TFs GATA2, GFI1B, and FOS convert mouse and human fibroblasts to hemogenic endothelial-like precursors that generate hematopoietic stem progenitor (HSPC)-like cells over time. This conversion is lacking in robustness both in yield and biological function. Herein, we show that inclusion of GFI1 to the reprogramming cocktail significantly expands the HSPC-like population. AFT024 coculture imparts functional potential to these cells and allows quantification of stem cell frequency. Altogether, we demonstrate an improved human hemogenic induction protocol that could provide a valuable human in vitro model of hematopoiesis for disease modeling and a platform for cell-based therapeutics. DATABASE: Gene expression data are available in the Gene Expression Omnibus (GEO) database under the accession number GSE130361.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Técnicas de Cocultura/métodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hemangioblastos/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
8.
Cell Rep ; 28(6): 1400-1409.e4, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390555

RESUMO

A multitude of signals are coordinated to maintain self-renewal in embryonic stem cells (ESCs). To unravel the essential internal and external signals required for sustaining the ESC state, we expand upon a set of ESC pluripotency-associated phosphoregulators (PRs) identified previously by short hairpin RNA (shRNA) screening. In addition to the previously described Aurka, we identify 4 additional PRs (Bub1b, Chek1, Ppm1g, and Ppp2r1b) whose depletion compromises self-renewal and leads to consequent differentiation. Global gene expression profiling and computational analyses reveal that knockdown of the 5 PRs leads to DNA damage/genome instability, activating p53 and culminating in ESC differentiation. Similarly, depletion of genome integrity-associated genes involved in DNA replication and checkpoint, mRNA processing, and Charcot-Marie-Tooth disease lead to compromise of ESC self-renewal via an increase in p53 activity. Our studies demonstrate an essential link between genomic integrity and developmental cell fate regulation in ESCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/fisiologia , Instabilidade Genômica , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Dano ao DNA , Perfilação da Expressão Gênica , Teste de Complementação Genética , Camundongos , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , RNA Interferente Pequeno , Transdução de Sinais , Proteína Supressora de Tumor p53/fisiologia
9.
Cell Rep ; 25(10): 2821-2835.e7, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517869

RESUMO

During development, hematopoietic stem and progenitor cells (HSPCs) arise from specialized endothelial cells by a process termed endothelial-to-hematopoietic transition (EHT). The genetic program driving human HSPC emergence remains largely unknown. We previously reported that the generation of hemogenic precursor cells from mouse fibroblasts recapitulates developmental hematopoiesis. Here, we demonstrate that human fibroblasts can be reprogrammed into hemogenic cells by the same transcription factors. Induced cells display dynamic EHT transcriptional programs, generate hematopoietic progeny, possess HSPC cell surface phenotype, and repopulate immunodeficient mice for 3 months. Mechanistically, GATA2 and GFI1B interact and co-occupy a cohort of targets. This cooperative binding is reflected by engagement of open enhancers and promoters, initiating silencing of fibroblast genes and activating the hemogenic program. However, GATA2 displays dominant and independent targeting activity during the early phases of reprogramming. These findings shed light on the processes controlling human HSC specification and support generation of reprogrammed HSCs for clinical applications.


Assuntos
Reprogramação Celular , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Sequência de Bases , Elementos Facilitadores Genéticos/genética , Fibroblastos/metabolismo , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Recém-Nascido , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica
10.
Physiol Genomics ; 29(2): 128-38, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17179208

RESUMO

We determined a transcriptional profile specific for clonal stromal mesenchymal stem cells from adult and fetal hematopoietic sites. To identify mesenchymal stem cell-like stromal cell lines, we evaluated the adipocytic, osteoblastic, chondrocytic, and vascular smooth muscle differentiation potential and also the hematopoietic supportive (stromal) capacity of six mouse stromal cell lines from adult bone marrow and day 14.5 fetal liver. We found that two lines were quadripotent and also supported hematopoiesis, BMC9 from bone marrow and AFT024 from fetal liver. We then ascertained the set of genes differentially expressed in the intersection set of AFT024 and BMC9 compared with those expressed in the union set of two negative control lines, 2018 and BFC012 (both from fetal liver); 346 genes were upregulated and 299 downregulated. Using Ingenuity software, we found two major gene networks with highly significant scores. One network contained downregulated genes that are known to be implicated in osteoblastic differentiation, proliferation, or transformation. The other network contained upregulated genes that belonged to two categories, cytoskeletal genes and genes implicated in the transcriptional machinery. The data extend the concept of stromal mesenchymal stem cells to clonal cell populations derived not only from bone marrow but also from fetal liver. The gene networks described should discriminate this cell type from other types of stem cells and help define the stem cell state.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Células-Tronco Mesenquimais/metabolismo , Células Estromais/metabolismo , Animais , Western Blotting , Células da Medula Óssea/fisiologia , Linhagem Celular , Primers do DNA , Imunofluorescência , Fígado/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/fisiologia
11.
Trends Cell Biol ; 26(3): 202-214, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26526106

RESUMO

Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Animais , Técnicas de Cultura de Células , Células Cultivadas , Reprogramação Celular , Células-Tronco Embrionárias/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia
12.
Dev Cell ; 36(5): 525-39, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26954547

RESUMO

Definitive hematopoiesis emerges via an endothelial-to-hematopoietic transition in the embryo and placenta; however, the precursor cells to hemogenic endothelium are not defined phenotypically. We previously demonstrated that the induction of hematopoietic progenitors from fibroblasts progresses through hemogenic precursors that are Prom1(+)Sca1(+)CD34(+)CD45(-) (PS34CD45(-)). Guided by these studies, we analyzed mouse placentas and identified a population with this phenotype. These cells express endothelial markers, are heterogeneous for early hematopoietic markers, and localize to the vascular labyrinth. Remarkably, global gene expression profiles of PS34CD45(-) cells correlate with reprogrammed precursors and establish a hemogenic precursor cell molecular signature. PS34CD45(-) cells are also present in intra-embryonic hemogenic sites. After stromal co-culture, PS34CD45(-) cells give rise to all blood lineages and engraft primary and secondary immunodeficient mice. In summary, we show that reprogramming reveals a phenotype for in vivo precursors to hemogenic endothelium, establishing that direct in vitro conversion informs developmental processes in vivo.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Reprogramação Celular , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Embrionárias Murinas/citologia , Animais , Células Cultivadas , Endotélio/metabolismo , Feminino , Fibroblastos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
14.
Methods Mol Med ; 105: 439-52, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15492413

RESUMO

Elucidation of the molecular mechanisms that are responsible for regulating the most basic properties of stem cells, self-renewal, and differentiation remains a major challenge in hematopoietic stem cell biology. We have taken a functional genomics approach towards revealing these mechanisms. Previous studies of the fetal liver genetic program led to the development of Stem Cell Database (SCDb, http://stemcell.princeton.edu), a resource for the stem cell community. These studies have been expanded to include the microenvironmental component of hematopoiesis and are the focus herein. In our efforts to study the microenvironmental component we have identified a stromal cell line, AFT024, which serves as a surrogate stem cell niche. The line provides a milieu that facilitates the maintenance of transplantable mouse and human stem cells as well as the generation of large populations of committed progenitors. In a manner mirroring the work done with the SCDb, we provide an online resource, Stromal Cell Database, StroCDB (http://stromalcell.princeton.edu), that is a compendium of information and data derived from biological and molecular studies of this surrogate niche. These include bioinformatic analyses of over 6000 clones derived from a subtracted library enriched for messages expressed in AFT024 as well as data derived from custom expression arrays developed from this library. Herein we describe these efforts and provide a guide for navigating the database and mining the information contained within.


Assuntos
Diferenciação Celular , Bases de Dados Factuais , Genômica , Células-Tronco Hematopoéticas , Internet , Animais , Humanos , Camundongos , Células Estromais
15.
Cell Rep ; 13(3): 504-515, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26456833

RESUMO

Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML). Germline PTPN11 defects cause Noonan syndrome (NS), and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs) harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features. hiPSC-derived NS/JMML myeloid cells exhibited increased signaling through STAT5 and upregulation of miR-223 and miR-15a. Similarly, miR-223 and miR-15a were upregulated in 11/19 JMML bone marrow mononuclear cells harboring PTPN11 mutations, but not those without PTPN11 defects. Reducing miR-223's function in NS/JMML hiPSCs normalized myelogenesis. MicroRNA target gene expression levels were reduced in hiPSC-derived myeloid cells as well as in JMML cells with PTPN11 mutations. Thus, studying an inherited human cancer syndrome with hiPSCs illuminated early oncogenesis prior to the accumulation of secondary genomic alterations, enabling us to discover microRNA dysregulation, establishing a genotype-phenotype association for JMML and providing therapeutic targets.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Leucemia Mielomonocítica Juvenil/metabolismo , Células Mieloides/citologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/patologia , MicroRNAs/genética , Mutação , Células Mieloides/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Regulação para Cima
16.
Elife ; 32014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25387005

RESUMO

Multiple cell types that share a common origin cooperate to form a supportive niche for stem cells that give rise to blood and to the cells of the immune system.


Assuntos
Nicho de Células-Tronco , Animais , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Modelos Biológicos , Nestina/metabolismo
17.
Cell Stem Cell ; 11(2): 179-94, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22862944

RESUMO

Many signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators. Depletion of one such molecule, aurora kinase A (Aurka), resulted in compromised self-renewal and consequent differentiation. By integrating global gene expression and computational analyses, we discovered that loss of Aurka leads to upregulated p53 activity that triggers ESC differentiation. Specifically, Aurka regulates pluripotency through phosphorylation-mediated inhibition of p53-directed ectodermal and mesodermal gene expression. Phosphorylation of p53 not only impairs p53-induced ESC differentiation but also p53-mediated suppression of iPSC reprogramming. Our studies demonstrate an essential role for Aurka-p53 signaling in the regulation of self-renewal, differentiation, and somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Aurora Quinase A , Aurora Quinases , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Células-Tronco Pluripotentes/citologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Xenopus
18.
Ann N Y Acad Sci ; 1176: 26-35, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19796230

RESUMO

Hematopoietic stem cells (HSC) have been defined by their ability to establish long-term hematopoiesis in myelo-ablated hosts. Prospective isolation using combinations of cell-surface markers and/or dye exclusion can yield highly purified and nearly homogeneous phenotypically defined cells that repopulate irradiated hosts. Although highly informative, these types of analyses may not necessarily reflect ongoing homeostatic hematopoiesis. HSCs are also described as being quiescent. This has been demonstrated by cell cycle analysis of phenotypically defined HSCs. Some studies have challenged the existence of truly quiescent HSCs, suggesting that they continuously cycle, albeit with very slow kinetics. Here we present a pulse-chase system based on the controllable incorporation of H2B-GFP into nucleosomes, which allows the identification, purification, and functional analysis of viable label-retaining cells. Our data complement and extend recent studies using similar strategies. These, together with our present studies, find a rare, quiescent or dormant subset within the population of stringently defined HSC phenotypes. To date, three types of niches, endosteal, vascular, and reticular, have been described; herein we review the cellular and spatial nature of these microenvironments. We propose that HSC label-retention combined with genetically manipulated stem cell niches will allow us to determine their anatomical architecture, to address HSC cell fate proliferation kinetics, and to begin to dissect the molecular cross talk among stem cells and niche cells in vivo during both normal and perturbed homeostasis.


Assuntos
Diferenciação Celular/genética , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/fisiologia , Modelos Genéticos , Nicho de Células-Tronco/fisiologia , Animais , Humanos , Camundongos
19.
Mol Med ; 14(3-4): 141-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18091979

RESUMO

Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopoiesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells.


Assuntos
Hematopoese/fisiologia , Isoenzimas/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/enzimologia , Células Cultivadas , Feminino , Hepatócitos/citologia , Hepatócitos/enzimologia , Isoenzimas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/genética , Comunicação Parácrina , Baço/citologia , Baço/enzimologia , Células-Tronco/citologia , Células-Tronco/enzimologia , Células Estromais/citologia , Células Estromais/enzimologia
20.
Science ; 311(5769): 1880-5, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16574858

RESUMO

A constellation of intrinsic and extrinsic cellular mechanisms regulates the balance of self-renewal and differentiation in all stem cells. Stem cells, their progeny, and elements of their microenvironment make up an anatomical structure that coordinates normal homeostatic production of functional mature cells. Here we discuss the stem cell niche concept, highlight recent progress, and identify important unanswered questions. We focus on three mammalian stem cell systems where large numbers of mature cells must be continuously produced throughout adult life: intestinal epithelium, epidermal structures, and bone marrow.


Assuntos
Folículo Piloso/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Mucosa Intestinal/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Derme/citologia , Derme/fisiologia , Células Epidérmicas , Epiderme/fisiologia , Homeostase , Mesoderma/citologia , Mesoderma/fisiologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Osteoblastos/fisiologia , Transdução de Sinais , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa