Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Drug Dev Res ; 78(1): 24-36, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27761936

RESUMO

Preclinical Research Approximately 2,500 years ago, Hippocrates used the word herpes as a medical term to describe lesions that appeared to creep or crawl on the skin, advocating heat as a possible treatment. During the last 50 years, pharmaceutical research has made great strides, and therapeutic options have expanded to include small molecule antiviral agents, protease inhibitors, preventive vaccines for a handful of the papillomaviruses, and even cures for hepatitis C virus infections. However, effective treatments for persistent and recurrent viral infections, particularly the highly prevalent herpesviruses, continue to represent a significant unmet medical need, affecting the majority of the world's population. Exploring the population diversity of the human microbiome and the effects its compositional variances have on the immune system, health, and disease are the subjects of intense investigational research and study. Among the collection of viruses, bacteria, fungi, and single-cell eukaryotes that comprise the human microbiome, the virome has been grossly understudied relative to the influence it exerts on human pathophysiology, much as mitochondria have until recently failed to receive the attention they deserve, given their critical biomedical importance. Fortunately, cellular epigenetic machinery offers a wealth of druggable targets for therapeutic intervention in numerous disease indications, including those outlined above. With advances in synthetic biology, engineering our body's commensal microorganisms to seek out and destroy pathogenic species is clearly on the horizon. This is especially the case given recent breakthroughs in genetic manipulation with tools such as the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) gene-editing platforms. Tying these concepts together with our previous work on the microbiome and neurodegenerative and neuropsychiatric diseases, we suggest that, because mammalian cells respond to a viral infection by triggering a cascade of antiviral innate immune responses governed substantially by the cell's mitochondria, small molecule carnitinoids represent a new class of therapeutics with potential widespread utility against many infectious insults. Drug Dev Res 78 : 24-36, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Anti-Infecciosos/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Viroses/tratamento farmacológico , Vírus/genética , Anti-Infecciosos/farmacologia , Epigênese Genética/efeitos dos fármacos , Edição de Genes , Humanos , Imunidade , Microbiota , Bibliotecas de Moléculas Pequenas/uso terapêutico , Biologia Sintética , Viroses/genética , Viroses/imunologia , Vírus/efeitos dos fármacos
2.
Drug Dev Res ; 77(3): 109-23, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26899010

RESUMO

Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/genética , Antioxidantes/farmacologia , Carnitina/análogos & derivados , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Doença de Parkinson/genética , Resultado do Tratamento
3.
Drug Dev Res ; 77(2): 53-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26899191

RESUMO

Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Carnitina/análogos & derivados , Carnitina/uso terapêutico , Epigenômica , Fármacos Neuroprotetores/uso terapêutico , Esquizofrenia/tratamento farmacológico , Animais , Humanos , Mitocôndrias/efeitos dos fármacos
4.
Drug Dev Res ; 76(4): 167-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26109467

RESUMO

Preclinical Research Given nuclear-power-plant incidents such as the 2011 Japanese Fukushima-Daiichi disaster, an urgent need for effective medicines to protect against and treat the harmful biological effects of radiation is evident. To address such a challenge, we describe potential strategies herein including mitochondrial and epigenetic-driven methods using lipoic and butyric acid ester conjugates of carnitine. The antioxidant and other therapeutically beneficial properties of this class of agents may protect against ionizing radiation and resultant mitochondrial dysfunction. Recent studies of the compounds described herein reveal the potential-although further research and development is required to prove the effectiveness of this approach-to provide field-ready radiation-protective drugs.


Assuntos
Antioxidantes/uso terapêutico , Ácido Butírico/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Lesões por Radiação/tratamento farmacológico , Protetores contra Radiação/uso terapêutico , Ácido Tióctico/uso terapêutico , Animais , Carnitina , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
Mitochondrion ; 72: 84-101, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37582467

RESUMO

Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.


Assuntos
Epilepsia , Selênio , Animais , Camundongos , Selênio/metabolismo , Mitocôndrias/metabolismo , Epilepsia/metabolismo , Convulsões/metabolismo , Ferro/metabolismo
6.
Biochem Pharmacol ; 203: 115168, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835206

RESUMO

Pathological deterioration of mitochondrial function is increasingly linked with multiple degenerative illnesses as a mediator of a wide range of neurologic and age-related chronic diseases, including those of genetic origin. Several of these diseases are rare, typically defined in the United States as an illness affecting fewer than 200,000 people in the U.S. population, or about one in 1600 individuals. Vision impairment due to mitochondrial dysfunction in the eye is a prominent feature evident in numerous primary mitochondrial diseases and is common to the pathophysiology of many of the familiar ophthalmic disorders, including age-related macular degeneration, diabetic retinopathy, glaucoma and retinopathy of prematurity - a collection of syndromes, diseases and disorders with significant unmet medical needs. Focusing on metabolic mitochondrial pathway mechanisms, including the possible roles of cuproptosis and ferroptosis in retinal mitochondrial dysfunction, we shed light on the potential of α-lipoyl-L-carnitine in treating eye diseases. α-Lipoyl-L-carnitine is a bioavailable mitochondria-targeting lipoic acid prodrug that has shown potential in protecting against retinal degeneration and photoreceptor cell loss in ophthalmic indications.


Assuntos
Degeneração Retiniana , Carnitina/metabolismo , Humanos , Recém-Nascido , Mitocôndrias/metabolismo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Retina/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle
7.
FASEB Bioadv ; 3(6): 420-427, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34124597

RESUMO

Given the disruption caused by the COVID-19 pandemic, life as we knew it has been turned upside down, but the need for science to go on has never been stronger. In the realm of scientific conferences, with the requirement for social distancing, the importance of wearing face coverings, and travel restrictions, only virtual meetings have been possible during the pandemic. But many are asking: What is the new post-pandemic normal likely to be? Do we still want to have in-person meetings when the restrictions are eased? Assuming we do, when will they be possible again, and under what conditions? Regardless of what the benefits of virtual symposia might be, are they here to stay? These questions, and many more that are being asked around the world today, are the subject of this perspective. Herein, we attempt to provide useful context and insight into where scientific meetings have been, where they are today, where they are going, and how they will get there. Our conclusion is that the pandemic has created an accelerated opportunity to make the world of future scientific conferences better in a "both/and" collaborative in-person/virtual scenario, not the more limited "pick one" choice.

8.
Biochem Pharmacol ; 193: 114809, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34673016

RESUMO

Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.


Assuntos
COVID-19/metabolismo , Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , COVID-19/terapia , Dieta Saudável , Metabolismo Energético/fisiologia , Humanos , Doenças Metabólicas/terapia , Doenças Mitocondriais/terapia , Doenças Neurodegenerativas/terapia , Estresse Oxidativo/fisiologia
10.
Biores Open Access ; 9(1): 94-105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257625

RESUMO

In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.

11.
Mol Divers ; 13(2): 241-5, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19255865

RESUMO

This short commentary takes a stroll through the early days of the field of combinatorial chemistry and molecular diversity. It offers a high-level perspective on the field's beginnings--and its future--as it relates to journals, books, pioneers, and advances.


Assuntos
Técnicas de Química Combinatória/métodos , Técnicas de Química Combinatória/tendências , Pesquisa/tendências
12.
Protein Pept Lett ; 25(12): 1044-1050, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30430932

RESUMO

The primary aim of this review article is to highlight current exciting and future looking areas of research in peptide science as applied to the discovery and development of novel therapeutics. Among the strengths of peptides as drug candidates are their high potency, specificity, and good safety profile. These positive attributes of peptides along with advances in drug delivery technologies have generated renewed interest in the discovery, optimization, and development of peptides as therapeutics. The intent of this review is to demonstrate that peptides have broad applicability in many therapeutic areas by examining some of the most compelling indications and targets for peptide therapeutics. For example, target selection for peptide therapeutics is challenging due to the inherent properties of peptides; therefore, identifying a clear differentiation strategy for a new peptide program over a small molecule or antibody program from the outset is critical for successful navigation of drug development hurdles. In this review, some of the latest techniques that accentuate the advantages and overcome the druggability limitations of peptides will be covered. Emerging technologies for enhancing the pharmacokinetics of peptides to achieve sufficient in vivo half-lives will be described and evaluated, as well as novel technologies for getting peptides across cell membranes to reach intracellular targets and across the blood-brain-barrier to reach central nervous system targets.


Assuntos
Descoberta de Drogas/métodos , Peptídeos/uso terapêutico , Animais , Membrana Celular/química , Desenho de Fármacos , Humanos , Peptídeos/química , Peptídeos/farmacocinética
13.
Biores Open Access ; 7(1): 107-115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30069423

RESUMO

Hearing loss, the most common neurological disorder and the fourth leading cause of years lived with disability, can have profound effects on quality of life. The impact of this "invisible disability," with significant consequences, economic and personal, is most substantial in low- and middle-income countries, where >80% of affected people live. Given the importance of hearing for communication, enjoyment, and safety, with up to 500 million affected globally at a cost of nearly $800 billion/year, research on new approaches toward prevention and treatment is attracting increased attention. The consequences of noise pollution are largely preventable, but irreversible hearing loss can result from aging, disease, or drug side effects. Once damage occurs, treatment relies on hearing aids and cochlear implants. Preventing, delaying, or reducing some degree of hearing loss may be possible by avoiding excessive noise and addressing major contributory factors such as cardiovascular risk. However, given the magnitude of the problem, these interventions alone are unlikely to be sufficient. Recent advances in understanding principal mechanisms that govern hearing function, together with new drug discovery paradigms designed to identify efficacious therapies, bode well for pharmaceutical intervention. This review surveys various causes of loss of auditory function and discusses potential neurological underpinnings, including mitochondrial dysfunction. Mitochondria mitigate cell protection, survival, and function and may succumb to cumulative degradation of energy production and performance; the end result is cell death. Energy-demanding neurons and vestibulocochlear hair cells are vulnerable to mitochondrial dysfunction, and hearing impairment and deafness are characteristic of neurodegenerative mitochondrial disease phenotypes. Beyond acting as cellular powerhouses, mitochondria regulate immune responses to infections, and studies of this phenomenon have aided in identifying nuclear factor kappa B and nuclear factor erythroid 2-related factor 2/antioxidant response element signaling as targets for discovery of otologic drugs, respectively, suppressing or upregulating these pathways. Treatment with free radical scavenging antioxidants is one therapeutic approach, with lipoic acid and corresponding carnitine esters exhibiting improved biodistribution and other features showing promise. These compounds are also histone deacetylase (HDAC) inhibitors, adding epigenetic modulation to the mechanistic milieu through which they act. These data suggest that new drugs targeting mitochondrial dysfunction and modulating epigenetic pathways via HDAC inhibition or other mechanisms hold great promise.

14.
Biores Open Access ; 6(1): 123-132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098118

RESUMO

The microbiome of the human body represents a symbiosis of microbial networks spanning multiple organ systems. Bacteria predominantly represent the diversity of human microbiota, but not to be forgotten are fungi, viruses, and protists. Mounting evidence points to the fact that the "microbial signature" is host-specific and relatively stable over time. As our understanding of the human microbiome and its relationship to the health of the host increases, it is becoming clear that many and perhaps most chronic conditions have a microbial involvement. The oral and gastrointestinal tract microbiome constitutes the bulk of the overall human microbial load, and thus presents unique opportunities for advancing human health prognosis, diagnosis, and therapy development. This review is an attempt to catalog a broad diversity of recent evidence and focus it toward opportunities for prevention and treatment of debilitating illnesses.

15.
Biores Open Access ; 6(1): 169-181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29291141

RESUMO

Eye disease is one of the primary medical conditions that requires attention and therapeutic intervention in ageing populations worldwide. Further, the global burden of diabetes and obesity, along with heart disease, all lead to secondary manifestations of ophthalmic distress. Therefore, there is increased interest in developing innovative new approaches that target various mechanisms and sequelae driving conditions that result in adverse vision. The research challenge is even greater given that the terrain of eye diseases is difficult to landscape into a single therapeutic theme. This report addresses the burden of eye disease due to mitochondrial dysfunction, including antioxidant, autophagic, epigenetic, mitophagic, and other cellular processes that modulate the biomedical end result. In this light, we single out lipoic acid as a potent known natural activator of these pathways, along with alternative and potentially more effective conjugates, which together harness the necessary potency, specificity, and biodistribution parameters required for improved therapeutic outcomes.

16.
Biores Open Access ; 5(1): 137-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27274912

RESUMO

In the past century, noncommunicable diseases have surpassed infectious diseases as the principal cause of sickness and death, worldwide. Trillions of commensal microbes live in and on our body, and constitute the human microbiome. The vast majority of these microorganisms are maternally derived and live in the gut, where they perform functions essential to our health and survival, including: digesting food, activating certain drugs, producing short-chain fatty acids (which help to modulate gene expression by inhibiting the deacetylation of histone proteins), generating anti-inflammatory substances, and playing a fundamental role in the induction, training, and function of our immune system. Among the many roles the microbiome ultimately plays, it mitigates against untoward effects from our exposure to the environment by forming a biotic shield between us and the outside world. The importance of physical activity coupled with a balanced and healthy diet in the maintenance of our well-being has been recognized since antiquity. However, it is only recently that characterization of the host-microbiome intermetabolic and crosstalk pathways has come to the forefront in studying therapeutic design. As reviewed in this report, synthetic biology shows potential in developing microorganisms for correcting pathogenic dysbiosis (gut microbiota-host maladaptation), although this has yet to be proven. However, the development and use of small molecule drugs have a long and successful history in the clinic, with small molecule histone deacetylase inhibitors representing one relevant example already approved to treat cancer and other disorders. Moreover, preclinical research suggests that epigenetic treatment of neurological conditions holds significant promise. With the mouth being an extension of the digestive tract, it presents a readily accessible diagnostic site for the early detection of potential unhealthy pathogens resident in the gut. Taken together, the data outlined herein provide an encouraging roadmap toward important new medicines and companion diagnostic platforms in a wide range of therapeutic indications.

17.
Ann N Y Acad Sci ; 1052: 116-35, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16024755

RESUMO

17alpha-estradiol (17alpha-E2) differs from its isomer, the potent feminizing hormone 17beta-estradiol (17beta-E2), only in the stereochemistry at one carbon, but this is sufficient to render it at least 200-fold less active as a transactivating hormone. Despite its meager hormonal activity, 17alpha-E2 is as potent as 17beta-E2 in protecting a wide variety of cell types, including primary neurons, from a diverse array of lethal and etiologically relevant stressors, including amyloid toxicity, serum withdrawal, oxidative stress, excitotoxicity, and mitochondrial inhibition, among others. Moreover, both estradiol isomers have shown efficacy in animal models of stroke, Alzheimer's disease (AD), and Parkinson's disease (PD). Data from many labs have yielded a mechanistic model in which 17alpha-E2 intercalates into cell membranes, where it terminates lipid peroxidation chain reactions, thereby preserving membrane integrity, and where it in turn is redox cycled by glutathione or by NADPH through enzymatic coupling. Maintaining membrane integrity is critical to mitochondrial function, where loss of impermeability of the inner membrane initiates both necrotic and apoptotic pathways. Thus, by serving as a mitoprotectant, 17alpha-E2 forestalls cell death and could correspondingly provide therapeutic benefit in a host of degenerative diseases, including AD, PD, Friedreich's ataxia, and amyotrophic lateral sclerosis, while at the same time circumventing the common adverse effects elicited by more hormonally active analogues. Positive safety and pharmacokinetic data from a successful phase I clinical study with oral 17alpha-E2 (sodium sulfate conjugate) are presented here, and several options for its future clinical assessment are discussed.


Assuntos
Estradiol/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Idoso , Doença de Alzheimer/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Estradiol/sangue , Estradiol/química , Feminino , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Doenças Neurodegenerativas/prevenção & controle , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/prevenção & controle , Receptores de Estrogênio/fisiologia , Estereoisomerismo , Acidente Vascular Cerebral/prevenção & controle
18.
Biochem Pharmacol ; 98(2): 360-2, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25931149

RESUMO

"A gentleman and a scholar" is how many would characterize David Triggle. His insightful, thoughtful approaches to professional pursuits, both personal research and collaborative relationships, stand out by any measure. He has shaped students, colleagues, and whole fields, calcium ion channels and ligands being most representative of the latter. In recent years, he has expanded his contributions to important commentaries on politics and social challenges in the sciences. David is the rare intellect able to do all this and more, as outlined herein.


Assuntos
Canais de Cálcio/fisiologia , Pesquisa , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/história , Canais de Cálcio/história , Química Farmacêutica/história , Química Farmacêutica/métodos , História do Século XX , História do Século XXI , Farmacologia/história , Farmacologia/métodos , Pesquisa/história
20.
PLoS One ; 8(4): e60579, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577127

RESUMO

BACKGROUND: The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency. METHODOLOGY/PRINCIPAL FINDINGS: A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo. CONCLUSIONS/SIGNIFICANCE: The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Armas Biológicas , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , United States Food and Drug Administration , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa