Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 23(23): e202200539, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36333105

RESUMO

Tetrazine (Tz)-trans-cyclooctene (TCO) ligation is an ultra-fast and highly selective reaction and it is particularly suited to label biomolecules under physiological conditions. As such, a 3 H-Tz based synthon would have wide applications for in vitro/ex vivo assays. In this study, we developed a 3 H-labeled Tz and characterized its potential for application to pretargeted autoradiography. Several strategies were explored to synthesize such a Tz. However, classical approaches such as reductive halogenation failed. For this reason, we designed a Tz containing an aldehyde and explored the possibility of reducing this group with NaBT4 . This approach was successful and resulted in [3 H]-(4-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)methan-t-ol with a radiochemical yield of 22 %, a radiochemical purity of 96 % and a molar activity of 0.437 GBq/µmol (11.8 Ci/mmol). The compound was successfully applied to pretargeted autoradiography. Thus, we report the synthesis of the first 3 H-labeled Tz and its successful application as a labeling building block.


Assuntos
Compostos Heterocíclicos , Compostos Radiofarmacêuticos , Linhagem Celular Tumoral , Compostos Radiofarmacêuticos/química , Ciclo-Octanos/química
2.
RSC Med Chem ; 14(3): 444-453, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36970152

RESUMO

Pretargeting is a powerful nuclear imaging strategy to achieve enhanced imaging contrast for nanomedicines and reduce the radiation burden to healthy tissue. Pretargeting is based on bioorthogonal chemistry. The most attractive reaction for this purpose is currently the tetrazine ligation, which occurs between trans-cyclooctene (TCO) tags and tetrazines (Tzs). Pretargeted imaging beyond the blood-brain barrier (BBB) is challenging and has not been reported thus far. In this study, we developed Tz imaging agents that are capable of ligating in vivo to targets beyond the BBB. We chose to develop 18F-labeled Tzs as they can be applied to positron emission tomography (PET) - the most powerful molecular imaging technology. Fluorine-18 is an ideal radionuclide for PET due to its almost ideal decay properties. As a non-metal radionuclide, fluorine-18 also allows for development of Tzs with physicochemical properties enabling passive brain diffusion. To develop these imaging agents, we applied a rational drug design approach. This approach was based on estimated and experimentally determined parameters such as the BBB score, pretargeted autoradiography contrast, in vivo brain influx and washout as well as on peripheral metabolism profiles. From 18 initially developed structures, five Tzs were selected to be tested for their in vivo click performance. Whereas all selected structures clicked in vivo to TCO-polymer deposited into the brain, [18F]18 displayed the most favorable characteristics with respect to brain pretargeting. [18F]18 is our lead compound for future pretargeted neuroimaging studies based on BBB-penetrant monoclonal antibodies. Pretargeting beyond the BBB will allow us to image targets in the brain that are currently not imageable, such as soluble oligomers of neurodegeneration biomarker proteins. Imaging of such currently non-imageable targets will allow early diagnosis and personalized treatment monitoring. This in turn will accelerate drug development and greatly benefit patient care.

3.
Biol Neonate ; 85(2): 112-20, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14673193

RESUMO

An animal model for the study of cerebrovascular physiology in the immature brain was developed. Twelve 3- to 5-day-old rat pups were maintained on spontaneous breathing under light anesthesia for either 1 or 2 h. Transcutaneous carbon dioxide tension and arterial oxygen saturation were monitored. Continuous infusion of doxapram limited respiratory acidosis. Cerebral blood flow (CBF) and volume (CBV) could be monitored by near-infrared spectroscopy (NIRS) and laser-Doppler flowmetry (LDF) in spite of some movement artifacts. CBV and CBF were 6.0 +/- 0.3 SE ml/100 g and 36.3 +/- 3.1 SE ml/100 g/min, respectively, and remained stable during the study. Cerebrovascular responses, as monitored by LDF and NIRS, to hypoxic and hypercapnic gas mixtures were consistent.


Assuntos
Animais Recém-Nascidos/fisiologia , Circulação Cerebrovascular , Fluxometria por Laser-Doppler , Espectroscopia de Luz Próxima ao Infravermelho , Equilíbrio Ácido-Base , Administração por Inalação , Animais , Volume Sanguíneo , Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Estudos de Viabilidade , Hemodinâmica , Homeostase , Hipóxia/fisiopatologia , Modelos Animais , Pressão Parcial , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa