Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Ind Eng Chem Res ; 60(44): 15999-16010, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34949902

RESUMO

This work reports initial results on the effect of low concentrations (ppm level) of a stabilizing agent (2,6-di-tert-butyl-4-methylphenol, BHT) present in an off-the-shelf solvent on the catalyst performance for the hydrogenolysis of γ-butyrolactone over Cu-ZnO-based catalysts. Tetrahydrofuran (THF) was employed as an alternative solvent in the hydrogenolysis of γ-butyrolactone. It was found that the Cu-ZnO catalyst performance using a reference solvent (1,4-dioxane) was good, meaning that the equilibrium conversion was achieved in 240 min, while a zero conversion was found when employing tetrahydrofuran. The deactivation was studied in more detail, arriving at the preliminary conclusion that one phenomenon seems to play a role: the poisoning effect of a solvent additive present at the ppm level (BHT) that appears to inhibit the reaction completely over a Cu-ZnO catalyst. The BHT effect was also visible over a commercial Cu-ZnO-MgO-Al2O3 catalyst but less severe than that over the Cu-ZnO catalyst. Hence, the commercial catalyst is more tolerant to the solvent additive, probably due to the higher surface area. The study illustrates the importance of solvent choice and purification for applications such as three-phase-catalyzed reactions to achieve optimal performance.

3.
Chem Commun (Camb) ; 51(81): 14992-5, 2015 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-26311021

RESUMO

Herein we show that species generated upon reaction of α-[Fe(CF3SO3)2(BPMCN)] (BPMCN = N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane) with H2O2 (putatively [Fe(V)(O)(OH)(BPMCN)]) is able to efficiently oxidize H2 to H2O even in the presence of organic substrates, while species formed in the presence of acetic acid (putatively [Fe(V)(O)(OAc)(BPMCN)]) prefer organic substrate oxidation over H2 activation. Mechanistic implications have been analysed with the aid of computational methods.


Assuntos
Peróxido de Hidrogênio/química , Hidrogênio/química , Compostos de Ferro/química , Água/química , Heme , Conformação Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa