Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Arch Gynecol Obstet ; 303(6): 1513-1522, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33575847

RESUMO

PURPOSE: Several roles are attributed to the myometrium including sperm and embryo transport, menstrual discharge, control of uterine blood flow, and labor. Although being a target of diabetes complications, the influence of high glucose on this compartment has been poorly investigated. Both miRNAs and IGF1R are associated with diabetic complications in different tissues. Herein, we examined the effects of high glucose on the expression of miRNAs and IGF1R signaling pathway in the human myometrium. METHODS: Human myometrial explants were cultivated for 48 h under either high or low glucose conditions. Thereafter, the conditioned medium was collected for biochemical analyses and the myometrial samples were processed for histological examination as well as miRNA and mRNA expression profiling by qPCR. RESULTS: Myometrial structure and morphology were well preserved after 48 h of cultivation in both high and low glucose conditions. Levels of lactate, creatinine, LDH and estrogen in the supernatant were similar between groups. An explorative screening by qPCR arrays revealed that 6 out of 754 investigated miRNAs were differentially expressed in the high glucose group. Data validation by single qPCR assays confirmed diminished expression of miR-215-5p and miR-296-5p, and also revealed reduced miR-497-3p levels. Accordingly, mRNA levels of IGF1R and its downstream mediators FOXO3 and PDCD4, which are potentially targeted by miR-497-3p, were elevated under high glucose conditions. In contrast, mRNA expression of IGF1, PTEN, and GLUT1 was unchanged. CONCLUSIONS: The human myometrium responds to short-term exposure (48 h) to high glucose concentrations by regulating the expression of miRNAs, IGF1R and its downstream targets.


Assuntos
Trabalho de Parto , Transdução de Sinais , Adulto , Proteínas Reguladoras de Apoptose , Feminino , Glucose , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Miométrio , Gravidez , Proteínas de Ligação a RNA , Receptor IGF Tipo 1
2.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799364

RESUMO

Epithelial membrane proteins (EMP1-3) are involved in epithelial differentiation and carcinogenesis. Dysregulated expression of EMP2 was observed in various cancers, but its role in human lung cancer is not yet clarified. In this study, we analyzed the expression of EMP1-3 and investigated the biological function of EMP2 in non-small cell lung cancer (NSCLC). The results showed that lower expression of EMP1 was significantly correlated with tumor size in primary lung tumors (p = 0.004). Overexpression of EMP2 suppressed tumor cell growth, migration, and invasion, resulting in a G1 cell cycle arrest, with knockdown of EMP2 leading to enhanced cell migration, related to MAPK pathway alterations and disruption of cell cycle regulatory genes. Exosomes isolated from transfected cells were taken up by tumor cells, carrying EMP2-downregulated microRNAs (miRNAs) which participated in regulation of the tumor microenvironment. Our data suggest that decreased EMP1 expression is significantly related to increased tumor size in NSCLC. EMP2 suppresses NSCLC cell growth mainly by inhibiting the MAPK pathway. EMP2 might further affect the tumor microenvironment by regulating tumor microenvironment-associated miRNAs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Glicoproteínas de Membrana/genética , Proteínas de Neoplasias/genética , Receptores de Superfície Celular/genética , Microambiente Tumoral/genética , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Transdução de Sinais/genética
3.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422900

RESUMO

Members of the placenta-specific miRNA cluster C19MC, including miR-519d, are secreted by fetal trophoblast cells within extracellular vesicles (EVs). Trophoblast-derived EVs can be internalized by the autologous trophoblast and surrounding maternal immune cells, resulting in coordination of cellular responses. The study of functions and targets of placental miRNAs in the donor and recipient cells may contribute to the understanding of the immune tolerance essential in pregnancy. Here, we report that miR-519d-3p levels correlate positively with cell proliferation and negatively with migration in trophoblastic cell lines. Inhibition of miR-519d-3p in JEG-3 cells increases caspase-3 activation and apoptosis. PDCD4 and PTEN are targeted by miR-519d-3p in a cell type-specific manner. Transfection of trophoblastic cell lines with miR-519d mimic results in secretion of EVs containing elevated levels of this miRNA (EVmiR-519d). Autologous cells enhance their proliferation and decrease their migration ability when treated with EVmiR-519d. NK92 cells incorporate EV-delivered miR-519d-3p at higher levels than Jurkat T cells. EVmiR-519d increases the proliferation of Jurkat T cells but decreases that of NK92 cells. Altogether, miR-519d-3p regulates pivotal trophoblast cell functions, can be transferred horizontally via EVs to maternal immune cells and exerts functions therein. Vesicular miRNA transfer from fetal trophoblasts to maternal immune cells may contribute to the immune tolerance in pregnancy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Proteínas de Ligação a RNA/genética , Trofoblastos/metabolismo , Apoptose/genética , Caspase 3/genética , Movimento Celular/genética , Proliferação de Células/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Feminino , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Células Jurkat , Células Matadoras Naturais/imunologia , Placenta/imunologia , Placenta/metabolismo , Placentação/genética , Gravidez , Linfócitos T/imunologia , Trofoblastos/imunologia
4.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396613

RESUMO

IL-36 cytokines (the agonists IL-36α, IL-36ß, IL-36γ, and the antagonist IL-36Ra) are expressed in the mouse uterus and associated with maternal immune response during pregnancy. Here, we characterize the expression of IL-36 members in human primary trophoblast cells (PTC) and trophoblastic cell lines (HTR-8/SVneo and JEG-3) and upon treatment with bacterial and viral components. Effects of recombinant IL-36 on the migration capacity of trophoblastic cells, their ability to interact with endothelial cells and the induction of angiogenic factors and miRNAs (angiomiRNAs) were examined. Constitutive protein expression of IL-36 (α, ß, and γ) and their receptor (IL-36R) was found in all cell types. In PTC, transcripts for all IL-36 subtypes were found, whereas in trophoblastic cell lines only for IL36G and IL36RN. A synthetic analog of double-stranded RNA (poly I:C) and lipopolysaccharide (LPS) induced the expression of IL-36 members in a cell-specific and time-dependent manner. In HTR-8/SVneo cells, IL-36 cytokines increased cell migration and their capacity to interact with endothelial cells. VEGFA and PGF mRNA and protein, as well as the angiomiRNAs miR-146a-3p and miR-141-5p were upregulated as IL-36 response in PTC and HTR-8/SVneo cells. In conclusion, IL-36 cytokines are modulated by microbial components and regulate trophoblast migration and interaction with endothelial cells. Therefore, a fundamental role of these cytokines in the placentation process and in response to infections may be expected.


Assuntos
Regulação da Expressão Gênica/genética , Interleucina-1/genética , Neovascularização Fisiológica/genética , Trofoblastos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Neovascularização Fisiológica/fisiologia , Poli I-C/farmacologia , Prostaglandinas F/genética , Prostaglandinas F/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trofoblastos/citologia , Trofoblastos/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987081

RESUMO

The IL-36 subfamily of cytokines has been recently described as part of the IL-1 superfamily. It comprises three pro-inflammatory agonists (IL-36α, IL-36ß, and IL-36γ), their receptor (IL-36R), and one antagonist (IL-36Ra). Although expressed in a variety of cells, the biological relevance of IL-36 cytokines is most evident in the communication between epithelial cells, dendritic cells, and neutrophils, which constitute the common triad responsible for the initiation, maintenance, and expansion of inflammation. The immunological role of IL-36 cytokines was initially described in studies of psoriasis, but novel evidence demonstrates their involvement in further immune and inflammatory processes in physiological and pathological situations. Preliminary studies have reported a dynamic expression of IL-36 cytokines in the female reproductive tract throughout the menstrual cycle, as well as their association with the production of immune mediators and cellular recruitment in the vaginal microenvironment contributing to host defense. In pregnancy, alteration of the placental IL-36 axis has been reported upon infection and pre-eclampsia suggesting its pivotal role in the regulation of maternal immune responses. In this review, we summarize current knowledge regarding the regulatory mechanisms and biological actions of IL-36 cytokines, their participation in different inflammatory conditions, and the emerging data on their potential role in normal and complicated pregnancies.


Assuntos
Inflamação/patologia , Interleucinas/metabolismo , Reprodução/imunologia , Animais , Feminino , Humanos , Modelos Biológicos , Gravidez , Transdução de Sinais
6.
Exp Cell Res ; 359(1): 275-283, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28729093

RESUMO

Proviral insertion in murine (PIM) lymphoma proteins are mainly regulated by the Janus Kinase/Signal Transducer Activator of Transcription (JAK/STAT) signaling pathway, which can be activated by members of the Interleukin-6 (IL-6) family, including Leukemia Inhibitory Factor (LIF). Aim of the study was to compare PIM1, PIM2 and PIM3 expression and potential cellular functions in human first and third trimester trophoblast cells, the immortalized first trimester extravillous trophoblast cell line HTR8/SVneo and the choriocarcinoma cell line JEG-3. Expression was analyzed by qPCR and immunochemical staining. Functions were evaluated by PIM inhibition followed by analysis of kinetics of cell viability as assessed by MTS assay, proliferation by BrdU assay, and apoptosis by Western blotting for BAD, BCL-XL, (cleaved) PARP, CASP3 and c-MYC. Apoptosis and necrosis were tested by flow cytometry (annexin V/propidium iodide staining). All analyzed PIM kinases are expressed in primary trophoblast cells and both cell lines and are regulated upon stimulation with LIF. Inhibition of PIM kinases significantly reduces viability and proliferation and induces apoptosis. Simultaneously, phosphorylation of c-MYC was reduced. These results demonstrate the involvement of PIM kinases in LIF-induced regulation in different trophoblastic cell lines which may indicate similar functions in primary cells.


Assuntos
Apoptose , Espaço Intracelular/metabolismo , Fator Inibidor de Leucemia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Trofoblastos/enzimologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imidazóis/farmacologia , Immunoblotting , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Piridazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos
7.
Reprod Fertil Dev ; 28(5): 608-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25247600

RESUMO

Leukaemia inhibitory factor (LIF) and oncostatin M (OSM) are pleiotropic cytokines present at the implantation site that are important for the normal development of human pregnancy. These cytokines share the cell membrane receptor subunit gp130, resulting in similar functions. The aim of this study was to compare the response to LIF and OSM in several trophoblast models with particular regard to intracellular mechanisms and invasion. Four trophoblast cell lines with different characteristics were used: HTR-8/SVneo, JEG-3, ACH-3P and AC1-M59 cells. Cells were incubated with LIF, OSM (both at 10ngmL(-1)) and the signal transducer and activator of transcription (STAT) 3 inhibitor S3I-201 (200µM). Expression and phosphorylation of STAT3 (tyr(705)) and extracellular regulated kinase (ERK) 1/2 (thr(202/204)) and the STAT3 DNA-binding capacity were analysed by Western blotting and DNA-binding assays, respectively. Cell viability and invasiveness were assessed by the methylthiazole tetrazolium salt (MTS) and Matrigel assays. Enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 was investigated by zymography. OSM and LIF triggered phosphorylation of STAT3 and ERK1/2, followed by a significant increase in STAT3 DNA-binding activity in all tested cell lines. Stimulation with LIF but not OSM significantly enhanced invasion of ACH-3P and JEG-3 cells, but not HTR-8/SVneo or AC1-M59 cells. Similarly, STAT3 inhibition significantly decreased the invasiveness of only ACH-3P and JEG-3 cells concomitant with decreases in secreted MMP-2 and MMP-9. OSM shares with LIF the capacity to activate ERK1/2 and STAT3 pathways in all cell lines tested, but their resulting effects are dependent on cell type. This suggests that LIF and OSM may partially substitute for each other in case of deficiencies or therapeutic interventions.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oncostatina M/farmacologia , Fator de Transcrição STAT3/metabolismo , Trofoblastos/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , DNA/metabolismo , Feminino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/enzimologia
8.
Placenta ; 146: 42-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169218

RESUMO

INTRODUCTION: The transplacental passage of cells between a mother and her fetus, known as microchimerism, is a less studied process during pregnancy. The frequency of maternal microchimeric cells in fetal tissues in physiological pregnancies and mechanisms responsible for transplacental cell trafficking are poorly understood. This study aimed to evaluate the placental trafficking of maternal peripheral blood mononuclear cells (PBMC) using human ex vivo placenta perfusion. METHODS: Ten placentas and maternal PBMC were obtained after healthy pregnancies. Flow cytometry was used to characterize PBMC subtypes. They showed a higher percentage of CD3+ T cells compared to CD56+ NK cells. The isolated PBMC were stained with a fluorescent dye and perfused through the maternal circuit of the placenta in an ex vivo perfusion system. Subsequent immunofluorescence staining for CD3+ T cells and CD56+ NK cells was performed on placental tissue sections, and the number of detectable PBMC in different tissue areas was counted using fluorescence microscopy. RESULTS: The applied method allowed discrimination of perfused autologous maternal cells from cells resident in the placenta before perfusion. Further, it allows additional immunohistochemical labelling and distinction of immune cell subsets. Perfused PBMC were detected in all analyzed placentas, mostly in contact to the syncytiotrophoblast. CD3+ T cells were identified more frequently than CD56+ NK cells and some CD3+ T cells were found inside fetoplacental tissues and vasculature. The results indicate that also other PBMCs than T or NK cells adhere to or enter villous tissue, but they have not been specified in this analysis. DISCUSSION: Previous studies have detected maternal cells in the fetal circulation which we could mimick in our ex vivo placenta perfusion experiments with fluorescence labelled autologous maternal PBMC. The applied experimental settings did not allow comparison of transmigration abilities of PBMC subsets, but slight modifications of the model will permit further studies of cell transfer processes and microchimerism in pregnancy.


Assuntos
Leucócitos Mononucleares , Placenta , Humanos , Gravidez , Feminino , Linfócitos T , Perfusão , Células Matadoras Naturais , Troca Materno-Fetal
9.
ScientificWorldJournal ; 2013: 259845, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24288470

RESUMO

Invasiveness of trophoblast and choriocarcinoma cells is in part mediated via leukemia inhibitory factor- (LIF-) induced activation of signal transducer and activator of transcription 3 (STAT3). The regulation of STAT3 phosphorylation at its ser727 binding site, possible crosstalk with intracellular MAPK signaling, and their functional implications are the object of the present investigation. JEG-3 choriocarcinoma cells were cultured in presence/absence of LIF and the specific ERK1/2 inhibitor (U0126). Phosphorylation of signaling molecules (p-STAT3 (ser727 and tyr705) and p-ERK1/2 (thr 202/tyr 204)) was assessed per Western blot. Immunocytochemistry confirmed results, but also pinpointed the location of phosphorylated signaling molecules. STAT3 DNA-binding capacity was studied with a colorimetric ELISA-based assay. Cell viability and invasion capability were assessed by MTS and Matrigel assays. Our results demonstrate that LIF-induced phosphorylation of STAT3 (tyr705 and ser727) is significantly increased after blocking ERK1/2. STAT3 DNA-binding capacity and cell invasiveness are enhanced after LIF stimulation and ERK1/2 blockage. In contrast, proliferation is enhanced by LIF but reduced after ERK1/2 inhibition. The findings herein show that blocking ERK1/2 increases LIF-induced STAT3 phosphorylation and STAT3 DNA-binding capacity by an intranuclear crosstalk, which leads to enhanced invasiveness and reduced proliferation.


Assuntos
Proliferação de Células , Coriocarcinoma/metabolismo , Fator Inibidor de Leucemia/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Butadienos/farmacologia , Linhagem Celular Tumoral , Coriocarcinoma/patologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Invasividade Neoplásica , Nitrilas/farmacologia , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia
10.
Autoimmun Rev ; 22(4): 103274, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36649876

RESUMO

Antiphospholipid syndrome (APS) is an autoimmune disease driven by a wide group of autoantibodies primarily directed against phospholipid-binding proteins (antiphospholipid antibodies). APS is defined by two main kinds of clinical manifestations: vascular thrombosis and pregnancy-related morbidity. In recent years, in vitro and in vivo assays, as well as the study of large groups of patients with APS, have led some authors to suggest that obstetric and vascular manifestations of the disease are probably the result of different pathogenic mechanisms. According to this hypothesis, the disease could be differentiated into two parallel entities: Vascular APS and obstetric APS. Thus, vascular APS is understood as an acquired thrombophilia in which a generalised phenomenon of endothelial activation and dysfunction (coupled with a triggering factor) causes thrombosis at any location. In contrast, obstetric APS seems to be due to an inflammatory phenomenon accompanied by trophoblast cell dysfunction. The recent approach to APS raises new issues; for instance, the mechanisms by which a single set of autoantibodies can lead to two different clinical entities are unclear. This review will address the monocyte, a cell with well-known roles in haemostasis and pregnancy, as a potential participant in vascular thrombosis and pregnancy-related morbidity in APS. We will discuss how in a steady state the monocyte-endothelial interaction occurs via extracellular vesicles (EVs), and how antiphospholipid antibodies, by inducing endothelial activation and dysfunction, may disturb this interaction to promote the release of monocyte-targeted procoagulant and inflammatory messages.


Assuntos
Síndrome Antifosfolipídica , Vesículas Extracelulares , Trombose , Gravidez , Feminino , Humanos , Monócitos , Anticorpos Antifosfolipídeos , Células Endoteliais
11.
J Reprod Immunol ; 158: 103957, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253287

RESUMO

Molecular communication between a pathogen and its host is crucial for a successful interplay. Extracellular vesicles (EVs) act as mediators for the delivery of molecular signals among pathogens or between pathogens and the host. Toxoplasma gondii (T. gondii), an intracellular parasite with a worldwide presence, produces EVs itself, or induces the secretion of EVs from infected host cells potentially having capacities to modulate the host immune response. T. gondii infection is particularly important during pregnancy. Depending on the gestational age at the time of infection, the parasite can be transmitted through the placenta to the fetus, causing clinical complications such as jaundice, hepatosplenomegaly, chorioretinitis, cranioencephalic abnormalities, or even death. T. gondii infection is related to a pro-inflammatory immune response in both mother and fetus, which may enhance parasite transmission, but the implication of EV signaling in this process remains unclear. In this review, we summarize the current knowledge on EV release from T. gondii and its human host cells in regard to the immunological consequences and the passage through the placenta.


Assuntos
Vesículas Extracelulares , Toxoplasma , Toxoplasmose , Gravidez , Feminino , Humanos , Interações Hospedeiro-Patógeno , Placenta
12.
Front Endocrinol (Lausanne) ; 14: 1021640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936174

RESUMO

Placenta accreta spectrum (PAS) is one of the major causes of maternal morbidity and mortality worldwide with increasing incidence. PAS refers to a group of pathological conditions ranging from the abnormal attachment of the placenta to the uterus wall to its perforation and, in extreme cases, invasion into surrounding organs. Among them, placenta accreta is characterized by a direct adhesion of the villi to the myometrium without invasion and remains the most common diagnosis of PAS. Here, we identify the potential regulatory miRNA and target networks contributing to placenta accreta development. Using small RNA-Seq followed by RT-PCR confirmation, altered miRNA expression, including that of members of placenta-specific miRNA clusters (e.g., C19MC and C14MC), was identified in placenta accreta samples compared to normal placental tissues. In situ hybridization (ISH) revealed expression of altered miRNAs mostly in trophoblast but also in endothelial cells and this profile was similar among all evaluated degrees of PAS. Kyoto encyclopedia of genes and genomes (KEGG) analyses showed enriched pathways dysregulated in PAS associated with cell cycle regulation, inflammation, and invasion. mRNAs of genes associated with cell cycle and inflammation were downregulated in PAS. At the protein level, NF-κB was upregulated while PTEN was downregulated in placenta accreta tissue. The identified miRNAs and their targets are associated with signaling pathways relevant to controlling trophoblast function. Therefore, this study provides miRNA:mRNA associations that could be useful for understanding PAS onset and progression.


Assuntos
MicroRNAs , Placenta Acreta , Gravidez , Humanos , Feminino , Placenta Acreta/genética , Placenta Acreta/metabolismo , Placenta Acreta/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Placenta/metabolismo , Miométrio
13.
Front Immunol ; 13: 941586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059466

RESUMO

Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease of unknown cause, which mainly affects women of childbearing age, especially between 15 and 55 years of age. During pregnancy, SLE is associated with a high risk of perinatal morbidity and mortality. Among the most frequent complications are spontaneous abortion, fetal death, prematurity, intrauterine Fetal growth restriction (FGR), and preeclampsia (PE). The pathophysiology underlying obstetric mortality and morbidity in SLE is still under investigation, but several studies in recent years have suggested that placental dysfunction may play a crucial role. Understanding this association will contribute to developing therapeutic options and improving patient management thus reducing the occurrence of adverse pregnancy outcomes in this group of women. In this review, we will focus on the relationship between SLE and placental insufficiency leading to adverse pregnancy outcomes.


Assuntos
Lúpus Eritematoso Sistêmico , Pré-Eclâmpsia , Adolescente , Adulto , Feminino , Retardo do Crescimento Fetal/etiologia , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Pessoa de Meia-Idade , Placenta , Gravidez , Resultado da Gravidez/epidemiologia , Adulto Jovem
14.
Front Physiol ; 13: 882544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707005

RESUMO

The NO-donor Pentaerytrithyltetranitrate (PETN) has vasodilatative properties and direct protective effects on endothelial cells. We formerly demonstrated that PETN, given to pregnant women during the second and third trimester, influences endothelial dysfunction related pregnancy complications like preeclampsia (PE) and fetal growth restriction (FGR). PETN treatment showed to delay PE to late pregnancy and achieved a profound risk reduction for FGR and/or perinatal death of 40%. The aim of this study was to confirm the effect of PETN on endothelial cell dysfunction at molecular level in an experimental approach. To induce endothelial dysfunction HUVEC were treated with 10 U/l of thrombin in the presence or absence of PETN. qRT-PCR analysis showed that PETN induced the expression of heme-oxygenase-1 and superoxide dismutase two but not endothelial NO-synthase under basal conditions. The induction of antioxidant proteins did not change basal reactive oxygen species (ROS) levels as measured by MitoSOX™ staining. PETN treatment significantly delayed the thrombin-induced disruption of the endothelial monolayer, determined using the xCELLigence® and attenuated the disrupting effect of thrombin on tubular junctions as seen in a tube-forming assay on Matrigel™. In western-blot-analysis we could show that PETN significantly reduced thrombin-induced extracellular signal-regulated kinase activation which correlates with reduction of thrombin-induced ROS. These experimental results establish the concept of how PETN treatment could stabilize endothelial resistance and angiogenic properties in pregnancy-induced stress. Thus, our results underscore the assumption, that the shown clinical effects of PETN are associated to its endothelial cell protection.

15.
Placenta ; 117: 78-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773744

RESUMO

The physical connection of mother and offspring during pregnancy allows the bi-directional exchange of a small number of cells through the placenta. These cells, which can persist long-term in the recipient individual are genetically foreign to it and therefore fulfill the principle of microchimerism. Over the last years, pioneer research on microchimeric cells revealed their role in immune adaptation during pregnancy and priming of tolerogenic responses in the progeny. However, the mechanisms involved in cell transfer across the placenta barrier remain poorly investigated. In this review, we summarize the evidence of fetomaternal microchimerism, propose a mechanism for cell trafficking through the placenta and discuss the different models and techniques available for its analysis. Likewise, we aim to generate interest in the use of ex vivo placenta perfusion to investigate microchimerism in physiological and pathological settings.


Assuntos
Quimerismo , Troca Materno-Fetal , Perfusão , Placenta , Feminino , Humanos , Gravidez
16.
Front Immunol ; 13: 837281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844513

RESUMO

The concept of biological identity has been traditionally a central issue in immunology. The assumption that entities foreign to a specific organism should be rejected by its immune system, while self-entities do not trigger an immune response is challenged by the expanded immunotolerance observed in pregnancy. To explain this "immunological paradox", as it was first called by Sir Peter Medawar, several mechanisms have been described in the last decades. Among them, the intentional transfer and retention of small amounts of cells between a mother and her child have gained back attention. These microchimeric cells contribute to expanding allotolerance in both organisms and enhancing genetic fitness, but they could also provoke aberrant alloimmune activation. Understanding the mechanisms used by microchimeric cells to exert their function in pregnancy has proven to be challenging as per definition they are extremely rare. Profiting from studies in the field of transplantation and cancer research, a synergistic effect of microchimerism and cellular communication based on the secretion of extracellular vesicles (EVs) has begun to be unveiled. EVs are already known to play a pivotal role in feto-maternal tolerance by transferring cargo from fetal to maternal immune cells to reshape their function. A further aspect of EVs is their function in antigen presentation either directly or on the surface of recipient cells. Here, we review the current understanding of microchimerism in the feto-maternal tolerance during human pregnancy and the potential role of EVs in mediating the allorecognition and tropism of microchimeric cells.


Assuntos
Quimerismo , Vesículas Extracelulares , Feminino , Feto , Humanos , Tolerância Imunológica , Troca Materno-Fetal , Gravidez
17.
Cells ; 11(4)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35203276

RESUMO

Extracellular vesicles (EVs), including small EVs (sEVs), are involved in neuroinflammation and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Yet, increased neuroinflammation can also be detected in the aging brain, and it is associated with increased glial activation. Changes in EV concentration are reported in aging tissues and senescence cells, suggesting a role of EVs in the process of aging. Here, we investigated the effect of peripheral sEVs from aged animals on neuroinflammation, specifically on glial activation. sEVs were isolated from the peripheral blood of young (3 months) and aged (24 months) C57BL/6J wildtype mice and injected into the peripheral blood from young animals via vein tail injections. The localization of EVs and the expression of selected genes involved in glial cell activation, including Gfap, Tgf-ß, Cd68, and Iba1, were assessed in brain tissue 30 min, 4 h, and 24 h after injection. We found that sEVs from peripheral blood of aged mice but not from young mice altered gene expression in the brains of young animals. In particular, the expression of the specific astrocyte marker, Gfap, was significantly increased, indicating a strong response of this glial cell type. Our study shows that sEVs from aged mice can pass the blood-brain barrier (BBB) and induce glial cell activation.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Doença de Alzheimer/metabolismo , Animais , Astrócitos , Barreira Hematoencefálica/metabolismo , Vesículas Extracelulares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
18.
Mol Aspects Med ; 87: 101023, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34521556

RESUMO

Tobacco smoking is an important public health issue recognized by the world health organization as one of the most serious, preventable risk factors for developing a series of pregnancy pathologies. Maternal smoking is positively associated with intrauterine growth restriction (IUGR) and gestational diabetes (GDM), but negatively associated with preeclampsia (PE). In this review, we examine epidemiological, clinical and laboratory studies of smoking effects on immunoregulation during pregnancy, trophoblast function, and placental vasculature development and metabolism. We aim to identify effects of tobacco smoke components on specific placental compartments or cells, which may contribute to the understanding of the influences of maternal smoking on placenta function in normal and pathological pregnancies. Data corroborates that in any trimester, smoking is unsafe for pregnancy and that its detrimental effects outweigh questionable benefits. The effects of maternal smoking on the maternal immune regulation throughout pregnancy and the impact of different tobacco products on fetal growth have not yet been fully understood. Smoking cessation rather than treatment with replacement therapies is recommended for future mothers because also single components of tobacco and its smoke may have detrimental effects on placental function.


Assuntos
Placenta , Fumar , Feminino , Retardo do Crescimento Fetal/epidemiologia , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/metabolismo , Humanos , Placenta/metabolismo , Gravidez , Fumar/efeitos adversos , Fumar/metabolismo , Fumar Tabaco , Uso de Tabaco , Trofoblastos/metabolismo
19.
Reprod Fertil Dev ; 23(5): 714-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21635820

RESUMO

Leukaemia inhibitory factor (LIF) is one of the cytokines that is indispensable for embryo implantation. The aim of the present study was to investigate the role of activation of extracellular signal-regulated kinase (ERK) 1/2 in LIF-mediated proliferation of HTR-8/SVneo cells. Stimulation of HTR-8/SVneo cells with LIF (50 ng mL(-1)) resulted in an increase in cell proliferation (P < 0.05) via increased transition of cells to the G(2)/M phase of cell cycle. Stimulation with LIF resulted in the activation of both signal transducer and activator of transcription (STAT) 3 Tyr(705) and ERK1/2, but inhibition of ERK1/2 signalling by pretreatment of cells with U0126 (10 µM) for 2h resulted in abrogation of LIF-mediated increases in G(2)/M transition, with a significant decrease (P < 0.05) in absolute cell numbers compared with control. Although STAT3 silencing had no effect on LIF-dependent proliferation of HTR-8/SVneo cells, it did result in an increase in cell apoptosis, which increased further upon inhibition of ERK1/2 activation irrespective of LIF stimulation. Stimulation of cells with LIF increased the Bcl-2/Bax ratio, whereas ERK1/2 inhibition decreased the Bcl-2/Bax ratio, even after LIF stimulation. Hence, it can be inferred that ERK1/2 activation is essential for LIF-mediated increases in proliferation and that both STAT3 and ERK1/2 activation are important for the survival of HTR-8/SVneo cells.


Assuntos
Proliferação de Células , Fator Inibidor de Leucemia/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Trofoblastos/enzimologia , Antígenos Transformantes de Poliomavirus/genética , Apoptose , Butadienos/farmacologia , Ciclo Celular , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Ativação Enzimática , Humanos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Nitrilas/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fatores de Tempo , Trofoblastos/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
20.
Placenta ; 104: 199-207, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33418345

RESUMO

Increasing human exposure to nanoparticles (NPs) from various sources raises concerns for public health, especially for vulnerable risk groups like pregnant women and their developing fetuses. However, nanomedicine and the prospect of creating safe and effective NP-based formulations of drugs hold great promise to revolutionize treatment during pregnancy. With maternal and fetal health at stake, risks and opportunities of NPs in pregnancy need to be carefully investigated. Importantly, a comprehensive understanding of NP transport and effects at the placenta is urgently needed considering the central position of the placenta at the maternal-fetal interface and its many essential functions to enable successful pregnancy. The perfusion of human placental tissue provides a great opportunity to achieve predictive human relevant insights, circumventing uncertainties due to considerable differences in placental structure and function across species. Here, we have reviewed the current literature on the ex vivo human placenta perfusion of NPs. From 16 available studies, it was evident that placental uptake and transfer of NPs are highly dependent on their characteristics like size and surface modifications, which is in line with previous observations from in vitro and animal transport studies. These studies further revealed that special considerations apply for the perfusion of NPs and we identified relevant controls that should be implemented in future perfusion studies. While current studies mostly focused on placental transfer of NPs to conclude on potential fetal exposure, the ex vivo placental perfusion model has considerable potential to reveal novel insights on NP effects on placental tissue functionality and signaling that could indirectly affect maternal-fetal health.


Assuntos
Nanopartículas/análise , Placenta/química , Animais , Transporte Biológico , Feminino , Humanos , Troca Materno-Fetal , Nanomedicina , Gravidez
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa