Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2405326, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394755

RESUMO

Enzymatically-active polyelectrolyte multilayers containing n layers of phosphatase (APn-PEM) induce the formation of supported biocatalytic supramolecular hydrogels when brought in contact with the precursor tripeptide Fmoc-FFpY (Fmoc = N-fluorenylmethyloxycarbonyl; F = Phenylalanine; Y = Tyrosine; p = phosphate group). APn-PEM triggers the spatially-localized hydrogelation reaching 2, 17 and 350 µm of thickness for n = 1, 2 and 3, respectively. As observed by cryo scanning electron microscopy, a dense nanofibrous network underpinning the hydrogel shows parallelly orientated Fmoc-FFY peptide-based fibrils, perpendicular to the substrate. For the gel generated by the AP3-PEM, fluorescence confocal microscopy images show that during the peptide self-assembly, some enzymes are distributed in the hydrogel, preferentially located in few dozens of micrometers above the substrate. In addition, a self-assembly growth rate of 5 µm min-1 is determined when the hydrogelation starts. Through transmission electron microscopy immuno-labelling experiments on self-assemblies generated in solution, we observe that AP are decorating the Fmoc-FFY nanofibers. It is observed both a long-term stability and a higher biocatalytic activity of the so AP-encapsulated hydrogel compared to the bare APn-PEM. This bioactivity can be tuned by the number n in batch and under continuous flow conditions. To illustrate the versatility of this enzyme-supported strategy, multi-catalytic transformations in continuous flow conditions have been successfully carried out using supported supramolecular hydrogel.

2.
Soft Matter ; 20(38): 7723-7734, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39308326

RESUMO

Recently, we have investigated the enzyme-assisted self-assembly of precursor peptides diffusing in an enzyme-containing host gel, leading to various self-assembly profiles within the gel. At high enzyme concentrations, the reaction-diffusion self-assembly processes result in the formation of a continuous non-monotonous peptide self-assembly profile. At low enzyme concentrations, they result in the formation of individual self-assembled peptide microglobules and at intermediate enzyme concentrations both kinds of self-assembled structures coexist. Herein, we develop a Liesegang-type model that considers four major points: (i) the diffusion of the precursor peptides within the host gel, (ii) the diffusion of the enzymes in the gel, (iii) the enzymatic transformation of the precursor peptides into the self-assembling ones and (iv) the nucleation of these building blocks as the starting point of the self-assembly process. This process is treated stochastically. Our model predicts most of the experimentally observed features and in particular (i) the transition from a continuous to a microglobular pattern of self-assembled peptides through five types of patterns by decreasing the enzyme concentration in the host hydrogel. (ii) It also predicts that when the precursor peptide concentration decreases, the enzyme concentration at which the continuous/microglobules transition appears increases. (iii) Finally, it predicts that for peptides whose critical self-assembly concentration in solution decreases, the peptide concentration at which the continuous-to-microglobular transition decreases too. All these predictions are observed experimentally.


Assuntos
Hidrogéis , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Hidrogéis/química , Difusão , Enzimas/química , Enzimas/metabolismo
3.
Chembiochem ; 24(2): e202200574, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36352557

RESUMO

Regulating a system in equilibrium transiently to out-of-equilibrium by using certain stimuli is the strategy used by natural biomolecules to function. Herein, we showed that the interaction of synthetic RNA aptamers, having a G-quadruplex core structure, with their corresponding ligands could be regulated from their equilibrium state to non-equilibrium state in a reversible manner using simple chemical stimuli (Ag+ and cysteine). The approach would be useful for designing aptamer regulators that work in a dynamic nucleic acid network, where a strict control on aptamer-ligand interaction is needed. In addition, to the best of our knowledge, this is the first report which shows that RNA G-quadruplexes can be disrupted by the addition of silver ions. This would be useful not only in designing RNA-based sensors or regulators but would also be useful for understanding the role of metal ions in RNA folding and catalysis.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Ácidos Nucleicos , RNA , Ligantes , Aptâmeros de Nucleotídeos/química
4.
ACS Omega ; 5(34): 21781-21795, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905392

RESUMO

The relative stereochemistry of C2 and C4 in 4-substituted prolyl polypeptides plays an important role in defining the derived conformation in solution. cis-(2S,4S)-Amino/hydroxy-l-prolyl polypeptide (lC-Amp 9/lC-Hyp 9) shows a PPII conformation in phosphate buffer and a ß-structure in a relatively hydrophobic solvent, trifluoroethanol (TFE). It is now demonstrated that the homochiral enantiomeric cis-substituted d-prolyl polypeptide (dC-Amp 9/dC-Hyp 9) exhibits mirror image ß-structures in TFE. In the case of alternating heterochiral prolyl peptides, it is the trans-substituted [lT(2S,4R)-dT(2R,4S)] n prolyl polypeptide that shows ß-structures in TFE, while the cis-substituted [lC(2S,4S)-dC(2R,4R)] n prolyl polypeptide is disordered in both phosphate buffer and TFE. The results highlight the important chirality-specific structural requirements for ß-structure formation. The observed conformation in solution (circular dichroism (CD)) is also correlated with the morphology of the self-assemblies (field emission scanning electron microscopy (FESEM)), with the PPII form leading to spherical nanoparticles and ß-structures leading to nanofiber formation. The results shed light on the role of relative stereochemistry at C2 and C4 in defining the polyproline peptide conformation in solution and how different conformations drive self-assemblies of peptides toward specific nanostructures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa