Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(28): 10773-10788, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152064

RESUMO

Nephrin is an immunoglobulin-type cell-adhesion molecule with a key role in the glomerular interpodocyte slit diaphragm. Mutations in the nephrin gene are associated with defects in the slit diaphragm, leading to early-onset nephrotic syndrome, typically resistant to treatment. Although the endocytic trafficking of nephrin is essential for the assembly of the slit diaphragm, nephrin's specific endocytic motifs remain unknown. To search for endocytic motifs, here we performed a multisequence alignment of nephrin and identified a canonical YXXØ-type motif, Y1139RSL, in the nephrin cytoplasmic tail, expressed only in primates. Using site-directed mutagenesis, various biochemical methods, single-plane illumination microscopy, a human podocyte line, and a human nephrin-expressing zebrafish model, we found that Y1139RSL is a novel endocytic motif and a structural element for clathrin-mediated nephrin endocytosis that functions as a phosphorylation-sensitive signal. We observed that Y1139RSL motif-mediated endocytosis helps to localize nephrin to specialized plasma membrane domains in podocytes and is essential for normal foot process organization into a functional slit diaphragm between neighboring foot processes in zebrafish. The importance of nephrin Y1139RSL for healthy podocyte development was supported by population-level analyses of genetic variations at this motif, revealing that such variations are very rare, suggesting that mutations in this motif have autosomal-recessive negative effects on kidney health. These findings expand our understanding of the mechanism underlying nephrin endocytosis and may lead to improved diagnostic tools or therapeutic strategies for managing early-onset, treatment-resistant nephrotic syndrome.


Assuntos
Glomérulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular , Clatrina/metabolismo , Embrião não Mamífero/metabolismo , Endocitose , Humanos , Glomérulos Renais/ultraestrutura , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Morfolinos/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Podócitos/citologia , Podócitos/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
2.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L150-L156, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982736

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa colonizes the lungs of susceptible individuals by deploying virulence factors targeting host defenses. The secreted factor Cif (cystic fibrosis transmembrane conductance regulator inhibitory factor) dysregulates the endocytic recycling of CFTR and thus reduces CFTR abundance in host epithelial membranes. We have postulated that the decrease in ion secretion mediated by Cif would slow mucociliary transport and decrease bacterial clearance from the lungs. To test this hypothesis, we explored the effects of Cif in cultured epithelia and in the lungs of mice. We developed a strategy to interpret the "hurricane-like" motions observed in reconstituted cultures and identified a Cif-mediated decrease in the velocity of mucus transport in vitro. Presence of Cif also increased the number of bacteria recovered at two time points in an acute mouse model of pneumonia caused by P. aeruginosa. Furthermore, recent work has demonstrated an inverse correlation between the airway concentrations of Cif and 15-epi-lipoxin A4, a proresolving lipid mediator important in host defense and the resolution of pathogen-initiated inflammation. Here, we observe elevated levels of 15-epi-lipoxin A4 in the lungs of mice infected with a strain of P. aeruginosa that expresses only an inactive form of cif compared with those mice infected with wild-type P. aeruginosa. Together these data support the inclusion of Cif on the list of virulence factors that assist P. aeruginosa in colonizing and damaging the airways of compromised patients. Furthermore, this study establishes techniques that enable our groups to explore the underlying mechanisms of Cif effects during respiratory infection.


Assuntos
Proteínas de Bactérias/metabolismo , Brônquios/patologia , Células Epiteliais/patologia , Pneumonia/etiologia , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/metabolismo , Animais , Transporte Biológico , Brônquios/enzimologia , Brônquios/microbiologia , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/enzimologia , Células Epiteliais/microbiologia , Humanos , Lipoxinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Depuração Mucociliar , Pneumonia/metabolismo , Pneumonia/patologia , Infecções por Pseudomonas/microbiologia
3.
J Antimicrob Chemother ; 70(1): 160-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25213272

RESUMO

OBJECTIVES: Chelating iron may be a promising new therapy to eliminate Pseudomonas aeruginosa biofilms in the lungs of cystic fibrosis (CF) patients. Here, we investigate whether ALX-109 [a defined combination of an investigational drug containing lactoferrin (an iron-binding glycoprotein) and hypothiocyanite (a bactericidal agent)], alone and in combination with tobramycin or aztreonam, reduces P. aeruginosa biofilms grown on human CF airway epithelial cells. METHODS: P. aeruginosa (PAO1 and six clinical isolates of Pseudomonas) biofilms grown at the apical surface of confluent monolayers of CF airway epithelial cells were treated with ALX-109, either alone or in combination with tobramycin or aztreonam. Bacterial cfu remaining after treatment were determined by plate counting. RESULTS: ALX-109 alone reduced PAO1 biofilm formation, but had no effect on established biofilms. ALX-109 enhanced the ability of tobramycin and aztreonam to inhibit PAO1 biofilm formation and to reduce established PAO1 biofilms. ALX-109 and tobramycin were additive in disrupting established biofilms formed by six clinical isolates of P. aeruginosa obtained from the sputum of CF patients. Mucoid P. aeruginosa isolates were most susceptible to the combination of ALX-109 and tobramycin. In addition, ALX-109 also enhanced the ability of aztreonam to reduce established PAO1 biofilms. CONCLUSIONS: Inhalation therapy combining hypothiocyanite and lactoferrin with TOBI(®) (tobramycin) or Cayston(®) (aztreonam) may be beneficial to CF patients by decreasing the airway bacterial burden of P. aeruginosa.


Assuntos
Antibacterianos/metabolismo , Aztreonam/metabolismo , Células Epiteliais/microbiologia , Lactoferrina/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Tiocianatos/metabolismo , Tobramicina/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Células Cultivadas , Contagem de Colônia Microbiana , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia
4.
J Antimicrob Chemother ; 67(11): 2673-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843834

RESUMO

OBJECTIVES: Aztreonam for inhalation solution (AZLI) was recently approved by the FDA for treating cystic fibrosis (CF) patients infected with Pseudomonas aeruginosa. Here we investigated the effect of aztreonam alone or in combination with tobramycin on P. aeruginosa biofilms grown on CF airway epithelial cells. METHODS: P. aeruginosa biofilms, produced by laboratory strains or clinical isolates, were formed on confluent CF airway cells before treatment overnight with aztreonam or tobramycin alone or in combination. Alternatively, antibiotics were added 1 h after bacterial inoculation to assess their ability to impair biofilm formation at 5 h. Bacterial cfu remaining after treatment were then determined by plate counting. RESULTS: In the absence of antibiotics, all strains developed biofilms that disrupted CF airway epithelial monolayers overnight. Tobramycin reduced the cfu of all strains grown as biofilms. Aztreonam reduced the cfu of some strains by ∼1 log unit without preserving the integrity of cystic fibrosis airway cell monolayers, while decreasing the biofilms of other clinical isolates by ∼4 log units and protecting the monolayers from being compromised. The combination of aztreonam and tobramycin reduced the cfu of two strains by an additional 0.5 and 2 log units, respectively. Of all the mechanisms explored, Psl exopolysaccharide production might explain the variations in biofilm tolerance to aztreonam in some of the strains. CONCLUSIONS: Effects of aztreonam on P. aeruginosa biofilms in the in vitro co-culture model are strain-dependent. The simultaneous application of aztreonam and tobramycin may be beneficial for a subset of CF patients by eliminating susceptible P. aeruginosa strains.


Assuntos
Antibacterianos/farmacologia , Aztreonam/farmacologia , Biofilmes/efeitos dos fármacos , Células Epiteliais/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Fibrose Cística/complicações , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Fatores de Tempo
5.
Am J Respir Cell Mol Biol ; 41(3): 305-13, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19168700

RESUMO

The ability of Pseudomonas aeruginosa to form antibiotic-resistant biofilms is thought to account for the inability of current therapies to resolve bacterial infections in the lungs of patients with cystic fibrosis (CF). We recently described a system in which highly antibiotic-resistant P. aeruginosa biofilms grow on human CF airway epithelial cells, and using this system we showed that enhanced iron release from CF cells facilitates the development of such highly antibiotic-resistant biofilms. Given the positive role for iron in biofilm development, we investigated whether the FDA-approved iron chelators deferoxamine and deferasirox would enhance the ability of tobramycin, the primary antibiotic used to treat CF lung infections, to eliminate P. aeruginosa biofilms. The combination of tobramycin with deferoxamine or deferasirox reduced established biofilm biomass by approximately 90% and reduced viable bacteria by 7-log units. Neither tobramycin nor deferoxamine nor deferasirox alone had such a marked effect. The combination of tobramycin and FDA-approved iron chelators also prevented the formation of biofilms on CF airway cells. These data suggest that the combined use of tobramycin and FDA-approved iron chelators may be an effective therapy to treat patients with CF and other lung disease characterized by antibiotic-resistant P. aeruginosa biofilms.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Quelantes de Ferro , Infecções por Pseudomonas/tratamento farmacológico , Tobramicina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Células Cultivadas , Conalbumina/farmacologia , Conalbumina/uso terapêutico , Deferasirox , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Células Epiteliais/microbiologia , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico , Estados Unidos , United States Food and Drug Administration
6.
Infect Immun ; 76(4): 1423-33, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18212077

RESUMO

P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable magnesium transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Células Epiteliais/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Tobramicina/farmacologia , Antiporters/genética , Proteínas de Bactérias/genética , Linhagem Celular , Fibrose Cística/enzimologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Humanos , Oxirredutases/genética , Análise Serial de Proteínas , Pseudomonas aeruginosa/genética , Transcrição Gênica
7.
J Vis Exp ; (44)2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20972407

RESUMO

Bacterial biofilms have been associated with a number of different human diseases, but biofilm development has generally been studied on non-living surfaces. In this paper, we describe protocols for forming Pseudomonas aeruginosa biofilms on human airway epithelial cells (CFBE cells) grown in culture. In the first method (termed the Static Co-culture Biofilm Model), P. aeruginosa is incubated with CFBE cells grown as confluent monolayers on standard tissue culture plates. Although the bacterium is quite toxic to epithelial cells, the addition of arginine delays the destruction of the monolayer long enough for biofilms to form on the CFBE cells. The second method (termed the Flow Cell Co-culture Biofilm Model), involves adaptation of a biofilm flow cell apparatus, which is often used in biofilm research, to accommodate a glass coverslip supporting a confluent monolayer of CFBE cells. This monolayer is inoculated with P. aeruginosa and a peristaltic pump then flows fresh medium across the cells. In both systems, bacterial biofilms form within 6-8 hours after inoculation. Visualization of the biofilm is enhanced by the use of P. aeruginosa strains constitutively expressing green fluorescent protein (GFP). The Static and Flow Cell Co-culture Biofilm assays are model systems for early P. aeruginosa infection of the Cystic Fibrosis (CF) lung, and these techniques allow different aspects of P. aeruginosa biofilm formation and virulence to be studied, including biofilm cytotoxicity, measurement of biofilm CFU, and staining and visualizing the biofilm.


Assuntos
Biofilmes/crescimento & desenvolvimento , Brônquios/citologia , Brônquios/microbiologia , Técnicas de Cocultura/métodos , Pseudomonas aeruginosa/fisiologia , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Humanos , Pseudomonas aeruginosa/citologia
8.
Pulm Pharmacol Ther ; 21(4): 595-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18234534

RESUMO

The cystic fibrosis (CF) lung is chronically inflamed and infected by Pseudomonas aeruginosa, which is a major cause of morbidity and mortality in this genetic disease. Although aerosolization of Tobramycin into the airway of CF patients improves outcomes, the lungs of CF patients, even those receiving antibiotic therapy, are persistently colonized by P. aeruginosa. Recent studies suggest that the antibiotic resistance of P. aeruginosa in the CF lung is due to the formation of drug resistant biofilms, which are defined as communities of microbes associated with surfaces or interfaces, and whose growth is facilitated by thick and dehydrated mucus in the CF lung. In this review, we discuss some of the current models used to study biofilm formation in the context of biotic surfaces, such as airway cells, as well as the contribution of host-derived factors, including DNA, actin and mucus, to the formation of these microbial communities. We suggest that better in vitro models are required, both to understand the interaction of P. aeruginosa with the host airway, and as models to validate new therapeutics, whether targeted at bacteria or host.


Assuntos
Biofilmes , Fibrose Cística/microbiologia , Pseudomonas aeruginosa/metabolismo , Actinas/metabolismo , Antibacterianos/farmacologia , Fibrose Cística/tratamento farmacológico , DNA/metabolismo , Farmacorresistência Bacteriana , Células Epiteliais/metabolismo , Humanos , Muco/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/química
9.
Am J Physiol Lung Cell Mol Physiol ; 295(1): L25-37, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18359885

RESUMO

Enhanced antibiotic resistance of Pseudomonas aeruginosa in the cystic fibrosis (CF) lung is thought to be due to the formation of biofilms. However, there is no information on the antibiotic resistance of P. aeruginosa biofilms grown on human airway epithelial cells or on the effects of airway cells on biofilm formation by P. aeruginosa. Thus we developed a coculture model and report that airway cells increase the resistance of P. aeruginosa to tobramycin (Tb) by >25-fold compared with P. aeruginosa grown on abiotic surfaces. Therefore, the concentration of Tb required to kill P. aeruginosa biofilms on airway cells is 10-fold higher than the concentration achievable in the lungs of CF patients. In addition, CF airway cells expressing DeltaF508-CFTR significantly enhanced P. aeruginosa biofilm formation, and DeltaF508 rescue with wild-type CFTR reduced biofilm formation. Iron (Fe) content of the airway in CF is elevated, and Fe is known to enhance P. aeruginosa growth. Thus we investigated whether enhanced biofilm formation on DeltaF508-CFTR cells was due to increased Fe release by airway cells. We found that airway cells expressing DeltaF508-CFTR released more Fe than cells rescued with WT-CFTR. Moreover, Fe chelation reduced biofilm formation on airway cells, whereas Fe supplementation enhanced biofilm formation on airway cells expressing WT-CFTR. These data demonstrate that human airway epithelial cells promote the formation of P. aeruginosa biofilms with a dramatically increased antibiotic resistance. The DeltaF508-CFTR mutation enhances biofilm formation, in part, by increasing Fe release into the apical medium.


Assuntos
Antibacterianos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Fibrose Cística/microbiologia , Resistência Microbiana a Medicamentos , Células Epiteliais/microbiologia , Ferro/metabolismo , Mutação , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/crescimento & desenvolvimento , Mucosa Respiratória/microbiologia , Tobramicina/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Células Cultivadas , Técnicas de Cocultura , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Tobramicina/uso terapêutico
10.
J Biol Chem ; 282(32): 23725-36, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17462998

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl(-) channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and DeltaF508-CFTR in the apical membrane and decreased CFTR-mediated Cl(-) secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Endossomos/metabolismo , Células Epiteliais/citologia , Regulação da Expressão Gênica , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo V/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Endocitose , Inativação Gênica , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Miosina Tipo V/química , Interferência de RNA , Transfecção
11.
Am J Physiol Cell Physiol ; 290(3): C862-72, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16236828

RESUMO

The most common mutation in the CFTR gene in individuals with cystic fibrosis (CF), DeltaF508, leads to the absence of CFTR Cl(-) channels in the apical plasma membrane, which in turn results in impairment of mucociliary clearance, the first line of defense against inhaled bacteria. Pseudomonas aeruginosa is particularly successful at colonizing and chronically infecting the lungs and is responsible for the majority of morbidity and mortality in patients with CF. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the protein is at least partially functional as a Cl(-) channel. Thus current research efforts have focused on identification of drugs that restore the presence of CFTR in the apical membrane to alleviate the symptoms of CF. Because little is known about the effects of P. aeruginosa on CFTR in the apical membrane, whether P. aeruginosa will affect the efficacy of new drugs designed to restore the plasma membrane expression of CFTR is unknown. Accordingly, the objective of the present study was to determine whether P. aeruginosa affects CFTR-mediated Cl(-) secretion in polarized human airway epithelial cells. We report herein that a cell-free filtrate of P. aeruginosa reduced CFTR-mediated transepithelial Cl(-) secretion by inhibiting the endocytic recycling of CFTR and thus the number of WT-CFTR and DeltaF508-CFTR Cl(-) channels in the apical membrane in polarized human airway epithelial cells. These data suggest that chronic infection with P. aeruginosa may interfere with therapeutic strategies aimed at increasing the apical membrane expression of DeltaF508-CFTR.


Assuntos
Polaridade Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratória/citologia , Animais , Transporte Biológico , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cães , Células Epiteliais/citologia , Regulação da Expressão Gênica , Humanos , Mutação , Mucosa Respiratória/microbiologia
12.
J Biol Chem ; 280(44): 36762-72, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16131493

RESUMO

The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the apical plasma membrane. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the DeltaF508 mutation reduces the half-life of DeltaF508-CFTR in the apical plasma membrane. Because DeltaF508-CFTR retains some Cl(-) channel activity, increased expression of DeltaF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued DeltaF508-CFTR that lead to the decreased apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the DeltaF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Endocitose , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Meia-Vida , Humanos , Immunoblotting , Imunoprecipitação , Mutação , Proteínas de Neoplasias/metabolismo , Plasmídeos , Transporte Proteico , RNA Interferente Pequeno/farmacologia , Mucosa Respiratória/citologia , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa